REFLEXIVE SEMIGROUPS

R. O. FULP AND PAUL HILL

By a character of a semigroup S we mean a homomorphism χ of S into the multiplicative semigroup of complex numbers with the property that $\chi(1) \neq 0$ if S has an identity element 1. We denote by S^* the semigroup of all characters of S with respect to pointwise multiplication, and S^{**} is the character semigroup of S^*. In [3] Warne and Williams raised the question: when are S and S^{**} isomorphic? There is, of course, always a natural homomorphism of S into S^{**} and we interpret their question to mean: when are S and S^{**} naturally isomorphic? The purpose of this note is to answer the latter question. The natural homomorphism that we have referred to is the mapping $s \mapsto \psi_s$, where $\psi_s(\chi) = \chi(s)$ for each χ in S^*.

Definition. A semigroup S is said to be reflexive if S and S^{**} are naturally isomorphic, that is, if $s \mapsto \psi_s$ is an isomorphism from S onto S^{**}.

It is well known (see, for example, [1]) that a commutative semigroup S is an inverse semigroup if and only if S is a semilattice of groups.

Lemma 1. For any semigroup S, the semigroup S^* is a commutative inverse semigroup with identity.

Proof. These properties of S^* are inherited naturally from the multiplicative semigroup of complex numbers.

Corollary 1. Any reflexive semigroup is a commutative inverse semigroup with identity.

Theorem 1. A semigroup S is reflexive if and only if S is a reflexive semilattice of reflexive groups.

Proof. We may assume that S is a semilattice E of commutative groups $\{G_e\}_{e\in E}$ where E is the set of idempotent elements of S. Let f denote the restriction to E of the natural mapping of S into S^{**}. Let g denote the natural mapping of E into E^{**}. Define h from E^{**} into S^{**} by: $h(\theta) = \pi$ where $\pi(\chi) = \theta(\chi \mid E)$. Then h is an isomorphism from E^{**} onto the set F of idempotents of S^{**} and $f = h \cdot g$. Thus f is an isomorphism from E onto F if and only if g is an isomorphism from E onto E^{**}, that is, if and only if E is reflexive.

Presented to the Society, August 25, 1964; received by the editors July 8, 1964.
For each \(e \in E \) the diagram

\[
\begin{array}{c}
G_e \xrightarrow{f} S^{**} \\
\downarrow g \quad \downarrow h \\
G_e^{**}
\end{array}
\]

is commutative where: \(f \) is the restriction to \(G_e \) of the natural map from \(S \) into \(S^{**} \), \(g \) is the natural map from \(G_e \) into \(G_e^{**} \), and \(h(\emptyset) = \pi \) where

\[
\pi(\chi) = \begin{cases}
\theta(\chi) | G_e & \text{if } \chi(\emptyset) \neq 0, \\
0 & \text{if } \chi(\emptyset) = 0.
\end{cases}
\]

Moreover, \(h \) is an isomorphism from \(G_e^{**} \) onto \(H_{f(\emptyset)} \) where \(H_{f(\emptyset)} \) is the maximal subgroup of \(S^{**} \) having \(f(\emptyset) \) as an identity element. Hence \(f \) is an isomorphism from \(G_e \) onto \(H_{f(\emptyset)} \) if and only if \(G_e \) is reflexive. The theorem now follows.

Lemma 2. Suppose that \(E \) is a commutative idempotent semigroup. Necessary and sufficient conditions that \(E \) be reflexive are that \(E \) have an identity element and that every nonvoid subset of \(E \) contain a minimal element and a maximal element.

Proof. The sufficiency was shown in [3]. It follows from Corollary 1 that it is necessary for \(E \) to have an identity element.

Assume that there is an infinite descending chain in \(E \),

\[
e_1 > e_2 > \cdots > e_n > \cdots
\]

Define

\[
E^*_i = \{ \chi \in E^* \mid \chi(e_i) = 1 \text{ for } i = 1, 2, 3, \cdots \}.
\]

The complement of \(E^*_i \) in \(E^* \) is a prime ideal of \(E^* \). Thus the characteristic function \(\pi \) of the subset \(E^*_i \) of \(E^* \) is a character of \(E^* \), so \(\pi \) is an element of \(E^{**} \). Suppose that there is an element \(e \in E \) such that \(\chi(e) = \pi(\chi) \) for each \(\chi \in E^* \). Then for each \(\chi \in E^* \), we have that \(\chi(e) = 1 \) if and only if \(\chi(e_i) = 1 \) for each \(i \). However, it is easy to show that this is not the case by considering the characteristic functions of the following subsets of \(E \):

\[
E_0 = \{ x \in E \mid x \geq e_i \text{ for some } i \},
\]
\[
E_i = \{ x \in E \mid x \geq e_i \text{ for } i \geq 1 \}.
\]

We conclude that there is no element \(e \in E \) which maps \(\pi \) under
the natural map and that \(E \) is not reflexive if \(E \) contains an infinite descending chain.

A rather similar argument shows that if \(E \) is reflexive then \(E \) cannot contain an infinite ascending chain

\[
e_1 < e_2 < \cdots < e_n < \cdots
\]

In this case, we would define

\[
E^*_1 = \{ \chi \in E^* | \chi(e_i) = 1 \text{ for all but a finite number of } i \}
\]

and observe that no element of \(E \) maps onto the characteristic function \(\pi \) of \(E^*_1 \). Thus for \(E \) to be reflexive it is necessary for each non-void subset of \(E \) to contain a minimal element and a maximal element.

Corollary 2. A semilattice is reflexive if and only if it is a (complete) lattice with no infinite chain.

The following lemma follows from the results of [2].

Lemma 3. A group is reflexive if and only if it is finite and commutative.

We have now proved the following

Theorem 2. A semigroup is reflexive if and only if it is a lattice \(L \) of finite commutative groups where \(L \) has no infinite chain.

References

Georgia State College and Emory University