SYMMETRY FOR THE ENVELOPING ALGEBRA OF
A RESTRICTED LIE ALGEBRA

JOHN R. SCHUE

In a recent paper [1], Berkson has shown that the restricted enveloping algebra \(U \) of a restricted finite-dimensional Lie algebra \(L \) is a Frobenius algebra. By requiring that each transformation in the adjoint representation of \(L \) have zero trace (a condition satisfied by any nilpotent \(L \) or any \(L \) for which \([L, L] = L \)) it turns out that \(U \) is actually symmetric. A proof of this is given below.

We let \(L \) be a restricted Lie algebra which is finite-dimensional over a field \(K \) of characteristic \(p > 0 \). For \(x \in L \) let \(D_x \) be defined on \(L \) by \(D_x y = [x, y] \), and let \(\text{Tr}(D_x) \) denote the trace of \(D_x \). \(U \) will denote the restricted enveloping algebra of \(L \) as defined and discussed in [2, pp. 185–192], and \(U^* \) denotes the dual space of \(U \) over \(K \). For \(u \in U \) and \(\phi \in U^* \) define \(u\phi \) and \(\phi u \) by \((u\phi)(v) = \phi(vu) \), \((\phi u)(v) = \phi(uv) \) for all \(v \in U \). We choose a fixed ordered basis \(x_1, \ldots, x_n \) of \(L \) and thus \(\{x_1^i \cdot \cdots \cdot x_n^j : 0 \leq i_j \leq p-1 \} \) is a basis of \(U \). For each such basis element of \(U \) we define the degree as \(\sum i_j \) and for a linear combination of basis elements define the degree as the maximum of the degrees of basis elements which appear with nonzero coefficients. Let \(\phi_0 \) be defined as the linear functional on \(U \) which vanishes at each basis element except that \(\phi_0(x_1^{p-1} \cdot \cdots \cdot x_n^{p-1}) = 1 \). The main result of [1] is that the linear mapping \(u \to \phi_0 u \) from \(U \) to \(U^* \) is one-one and onto. The result to be proved here is the following:

Theorem. \(u\phi_0 = \phi_0 u \) for all \(u \in U \) iff \(\text{Tr}(D_x) = 0 \) for all \(x \in L \). Thus, if the latter condition is satisfied, \(U \) is symmetric, i.e., the bilinear form \((u, v) = \phi_0(uv) \) is symmetric, nondegenerate, and \((uv, w) = (u, vw) \) for all \(u, v, w \) in \(U \).

The proof of the theorem will follow from several lemmas.

Lemma 1. Suppose \(m \leq n(p-1) \) and \(y_1, \ldots, y_m \in L \). Then \(\phi_0(y_1, \ldots, y_m) = \phi_0(y_{i_1}, \ldots, y_{i_m}) \) for any permutation \(i_1, \ldots, i_m \) of 1, \(\ldots, m \). If \(m < n(p-1) \) then \(\phi_0(y_1, \ldots, y_m) = 0 \).

Proof. By using techniques like those used in [2] it follows that the degree of \(y_1, \ldots, y_m \) is no greater than \(m \) and that \(y_1, \ldots, y_m = y_{i_1} \cdot \cdots \cdot y_{i_m} + v \) where \(v \) has degree less than \(m \).

Received by the editors September 8, 1964.

1123
Lemma 2. For \(u, v \in U \) let \([u, v] = uv - vu\). Then for \(0 \leq m < p \) and \(x, y \in L \),
\[
[x, y^m] = \sum_{i=0}^{m} C_i (-1)^{i} y^{m-i} D^i y(x).
\]

Proof. The proof is by induction on \(m \). The case \(m = 1 \) is immediate; we assume the result as stated to prove it for \(m + 1 \). Now \([x, y^{m+1}] = [x, y^m y] = y^m [x, y] + [x, y^m] y = - y^m D_x x + y [x, y^m] - [y, [x, y^m]]\). If the induction hypothesis is used on each of the last two terms, together with \([y, y^{m-k} D^k x] = y^{m-k} D^{k+1} x\), a straightforward computation will give the desired conclusion.

Lemma 3. Let \(u_0 = x_1^{p-1} \cdots x_n^{p-1} \). For \(x \in L \) we have \(\phi_0(u_0 x) = \phi_0(x u_0) + \text{Tr}(D_x) \).

Proof. Let \(D_x x_i = \sum \lambda_{ij} x_j \). By virtue of Lemma 2, \(x_i^{p-1} x = x x_i^{p-1} + x_i^{p-2} [x, x_i] + u_i \) where \(u_i \) has degree less than \(p - 1 \). From Lemma 1 we obtain \(\phi_0(x_1^{p-1} \cdots x_i^{p-1} x \cdots x_n^{p-1}) = \phi_0(x_1^{p-1} \cdots x_i^{p-1} \cdots x_n^{p-1}) + \sum \lambda_{ij} \phi_0(x_1^{p-1} \cdots x_i^{p-2} x_{ij} \cdots x_n^{p-1}) \). However, since \(x_i \in L \), each of the terms in the last summation is zero for \(j \neq i \). Thus the sum reduces to \(\lambda_{ii} \phi_0(u_0) = \lambda_{ii} \). An induction argument can then be used to conclude that \(\phi_0(u_0 x) = \phi_0(x u_0) + \sum \lambda_{ii} = \phi_0(x u_0) + \text{Tr}(D_x) \).

Proof of the theorem. For each \(u \in U \) there is a unique \(u^* \in U \) such that \(u^* \phi_0 = \phi_0 u \). The mapping \(u \mapsto u^* \) is clearly linear and is one-one for if \(u^* \) is zero then \((\phi_0)(u) = 0 \) for all \(v \in U \) and this implies \(u = 0 \). Moreover, it is an automorphism of the associative algebra \(U \) since \((uv)^* \phi_0(w) = \phi_0(uvw) = \phi_0(vuw^*) = \phi_0(wu^{*}v^*) = (u^*v^*) \phi_0(w) \) for all \(w \). Suppose \(\text{Tr}(D_x) = 0 \) for all \(x \in L \). Then \(\phi_0(x u_0) = \phi_0(u_0 x) \). From Lemma 1 we have \(\phi_0(x u) = \phi_0(u x) \) for any basis element \(u \) of smaller degree than \(n(p - 1) \). Hence the same equation holds for all \(u \) and this implies \(x^* = x \) for all \(x \in L \). Since \(U \) is generated by \(1 \) and \(L \) we have \(u^* = u \) for all \(u \in U \).

Conversely, if \(u_0 = \phi_0 u \) for all \(u \) then \(x = x^* \) for all \(x \in L \) and Lemma 3 shows that \(\text{Tr}(D_x) = 0 \).

References

Macalester College