THE SHILOV BOUNDARY OF THE ALGEBRA
OF MEASURES ON A GROUP\(^1\)

JOSEPH L. TAYLOR

If \(G \) is a locally compact abelian topological group and \(M(G) \) denotes the algebra of bounded regular Borel measures on \(G \) under convolution multiplication, then \(M(G) \) is a convolution measure algebra in the sense of [1]. In [1] we showed that the maximal ideal space of any such algebra \(\mathcal{M} \) can be represented as the semigroup \(\mathcal{S} \) of all semicharacters on some compact abelian topological semigroup \(\mathcal{S} \). \(\mathcal{S} \) is called the structure semigroup of the algebra \(\mathcal{M} \). If \(H = \{ h \in \mathcal{S} : |h(s)| = 0 \text{ or } 1 \text{ for } s \in \mathcal{S} \} \), then the Gelfand transform \(\hat{\mu} \) of each element \(\mu \) of \(\mathcal{M} \) attains its maximum modulus on \(H \) (cf. [1, Theorem 3.3]). Hence the closure \(\overline{H} \) of \(H \) in the Gelfand topology contains the Shilov boundary of \(\mathcal{M} \). In [1] we show that when \(\mathcal{M} = M(G) \) for some nondiscrete locally compact topological group \(G \), then \(H \) is a proper subset of \(\mathcal{S} \). In this paper we show that there is at least one group \(G \) for which \(\mathcal{H} \) is a proper subset of \(\mathcal{S} \). Hence, for this group \(G \), the Shilov boundary of \(M(G) \) is a proper subset of the maximal ideal space of \(M(G) \).

For each positive integer \(n \) let \(T_n \) be the multiplicative two point group \(\{1, -1\} \) and set \(G = \prod_{n=1}^{\infty} T_n \). \(G \) is a compact abelian topological group. For each \(n \) we let \(\chi_n \) be the function which projects \(G \) onto its \(n \)th coordinate. Each \(\chi_n \) is a character in the dual group \(\hat{G} \) of \(G \) and each \(k \in \hat{G} \) is either the identity or a finite product of distinct \(\chi_n \)’s.

\(\mathcal{S} \) will denote the structure semigroup of \(M(G) \) and \(\mathcal{S} \) the semigroup of all continuous semicharacters on \(\mathcal{S} \). \(\mu \rightarrow \mu_S \) is the natural imbedding of \(M(G) \) into \(M(\mathcal{S}) \) (cf. [1, Theorem 2.3]). The Gelfand transform \(\hat{\mu} \) of \(\mu \in M(G) \) is described by the equation \(\hat{\mu}(f) = \int f \, d\mu_S \) for \(f \in \mathcal{S} \).

We are interested in a particular class of measures \(\mu \) in \(M(G) \). Let \(\{r_n\}_{n=1}^{\infty} \) be a sequence of numbers in \([0, 1)\) and for each \(n \) let \(\mu_n \) be the measure on \(T_n \) defined by \(\mu_n(1) = 2^{-1}(1 + r_n) \) and \(\mu_n(-1) = 2^{-1}(1 - r_n) \). Each \(\mu_n \) is a strictly positive measure of norm one on \(T_n \). Let \(\mu \) be the measure in \(M(G) \) which is the infinite product of the \(\mu_n \). That is, if \(U \) is any neighborhood in \(G \) of the form \(U = \{g \in G : \chi_n(g) \)
\(e_n, n = 1, 2, \ldots, m \), where \(\{ e_n \}_{n=1}^{m} \) is any \(n \)-tuple of 1's and \(-1\)'s, then \(\mu(U) = \prod_{n=1}^{m} 2^{-1}(1 + e_n r_n) \). Note that if \(k \) is any character of the form \(k = \prod_{i=1}^{m} x_{\alpha_i}, \) where \(x_{\alpha_i} \neq x_{\beta_j} \) for \(i \neq j \), then

\[
\int k \, d\mu = \prod_{i=1}^{m} [2^{-1}(1 + r_n) - 2^{-1}(1 - r_n)] = \prod_{i=1}^{m} r_n.
\]

We denote by \(\mathcal{S}(\mu) \) the Banach space of all measures in \(M(G) \) which are absolutely continuous with respect to \(\mu \). The adjoint space of \(\mathcal{S}(\mu) \) is \(L^1(\mu) \). Hence each function \(f \in \mathcal{S} \) determines a function \(f^* \) in \(L^1(\mu) \), such that \(\int f \, d\nu_S = \int f^* \, d\nu \) for each \(\nu \in \mathcal{S}(\mu) \). The map \(\nu \rightarrow \nu_S \) is an \(L \)-homomorphism of \(\mathcal{S}(\mu) \) into \(M(S) \) (cf. [1, Definition 1.3 and Theorem 2.3]) and its adjoint map is the map \(f \rightarrow f^* \). Thus, by Theorem 1.2 of [1], \(f \rightarrow f^* \) preserves pointwise multiplication and is a homomorphism of the semigroup \(\mathcal{S} \). We are interested in characterizing the image of \(\mathcal{S} \) in \(L^1(\mu) \).

Lemma 1. Each function \(f^* \) for \(f \in \mathcal{S} \) is of the form \(\lim_m a \prod_{n=1}^{m} x_{\alpha_n} \), where \(a \) is a constant with \(|a| \leq 1 \), \(e_n = 0 \) or 1 for \(n = 1, 2, \ldots, m \), and the limit is in \(L^1(\mu) \) norm.

Proof. If \(g \in G \) we denote by \(\delta_g \) the point measure at \(g \). The function \(f \in \mathcal{S} \) defines a multiplicative function \(k \) (not necessarily continuous) on \(G \) by \(k(g) = \int f \, d(\delta_g)_S = \delta_g(f) \). If \(G_0 \) denotes the subgroup of \(G \) consisting of all \(g \) for which \(\{ x_n(g) \}_{n=1}^{\infty} \) is eventually 1, then there exists a sequence \(\{ e_n \}_{n=1}^{\infty}, \) of 0's and 1's, such that \(k(g) = \prod_{n=1}^{\infty} x_{\alpha_n}(g) \) for \(g \in G_0 \).

Now for each positive integer \(m \) set \(U_m = \{ g \in G : x_n(g) = 1 \text{ if } n \leq m \} \) and \(E_m = \{ g \in G : x_n(g) = 1 \text{ if } n > m \} \). \(E_m \) contains \(2^m \) elements, \(U_m \) is a compact neighborhood of the identity, and \(\{ g U_m : g \in E_m \} \) is a pairwise disjoint cover of \(G \). Let \(\pi_m \) be the characteristic function of \(U_m \). For each \(m \) we choose a collection of numbers \(\{ b_{m, o} \}_{o \in E_m} \) with \(|b_{m, o}| \leq 1 \), which minimizes the number

\[
\int |f'(g) - \sum_{o' \in E_m} b_{m, o'} \pi_m(gg')| \, d\mu(g).
\]

We set \(h_m(g) = \sum_{o' \in E_m} b_{m, o'} \pi_m(gg') \). The sequence \(\{ f | h_m - f' | d\mu \}_{m=1}^{\infty} \) is nonincreasing and, since the continuous simple step functions of norm \(\leq 1 \) are dense in the unit ball of \(L_1(\mu) \), it follows that this sequence converges to zero.

Fix \(m \) and for \(g \in E_m \) and \(V \) a Borel set of \(G \) define \(\nu_g(V) = \mu(V \cap g U_m) \), then
\[v_{01} = \left\| v_{21} \right\|^{-1} \left\| v_{21} \right\| \delta_{21} (g_{1})^{-1} \cdot v_{21} \]
\[= \prod_{x_{n}(g_{1}) = 1} (1 + r_{n})^{-1} (1 - r_{n}) \prod_{x_{n}(g_{1}) = -1} (1 - r_{n})^{-1} (1 + r_{n}) \delta_{21} (g_{1})^{-1} \cdot v_{21} . \]

Also, it follows from the definitions of \(f' \) and \(\kappa' \) that
\[f'(g_{1}) = k(g_{1}) f'(g) \]
\[= \prod_{n=1}^{m} x_{n}^{e_{n}}(g_{1}) f'(g) \text{ a.e.} / \mu \text{ for each } g_{1} \in E_{m} . \]
Choose \(g_{0} \in E_{m} \) such that
\[\left\| v_{21} \right\|^{-1} \left| f' - h_{n} \right| dv_{g_{0}} = \min_{g \in E_{m}} \left\| v_{21} \right\|^{-1} \left| f' - h_{m} \right| dv_{g} \]
and let \(a_{m} = b_{m} \cdot \kappa(g_{0}) \) and \(b_{m} \in E_{m} \). Then
\[\int \left| f' - a_{m} k_{m} \right| d \mu = \sum_{g_{1} \in E_{m}} \int \left| f' - a_{m} k_{m} \right| dv_{g_{1}} \]
\[= \sum_{g_{1} \in E_{m}} \left\| v_{g_{0}} \right\|^{-1} \left\| v_{g_{1}} \right\| \int \left| f' - a_{m} k_{m} \right| d \left(\delta_{g_{1} g_{0}^{-1}} \cdot v_{g_{0}} \right) \]
\[= \sum_{g_{1} \in E_{m}} \left\| v_{g_{0}} \right\|^{-1} \left\| v_{g_{1}} \right\| \int \left| f'(g_{1} g_{0}^{-1} g) - a_{m} k_{m} (g_{1} g_{0}^{-1} g) \right| dv_{g_{0}} (g) \]
\[= \sum_{g_{1} \in E_{m}} \left\| v_{g_{0}} \right\|^{-1} \left\| v_{g_{1}} \right\| \int \left| k_{m} (g_{1} g_{0}^{-1}) (f'(g) - a_{m} k_{m} (g)) \right| dv_{g_{0}} (g) \]
\[= \sum_{g_{1} \in E_{m}} \left\| v_{g_{0}} \right\|^{-1} \left\| v_{g_{1}} \right\| \int \left| f' - h_{m} \right| dv_{g_{0}} \]
\[\leq \sum_{g_{1} \in E_{m}} \int \left| f' - h_{m} \right| dv_{g_{0}} = \int \left| f' - h_{m} \right| d \mu . \]

That is, \(\int \left| f' - a_{m} k_{m} \right| d \mu \leq \int \left| f' - h_{m} \right| d \mu . \) Hence
\[\{ a_{m} k_{m} \}_{m=1}^{\infty} = \{ a_{m} \prod_{n=1}^{m} x_{n}^{e_{n}} \}_{m=1}^{\infty} \]
converges in \(L_{1}(\mu) \) norm to \(f' \). If \(a \) is a cluster point of the sequence \(\{ a_{m} \}_{m=1}^{\infty} \), then \(\{ a_{m} \prod_{n=1}^{m} x_{n}^{e_{n}} \}_{m=1}^{\infty} \) also converges to \(f' \) in \(L_{1}(\mu) \) norm. This completes the proof.

Lemma 2. If \(\lim \sup_{n} r_{n} < 1 \) and \(f' = \lim_{n} \prod_{n=1}^{m} x_{n}^{e_{n}} \) as in Lemma 1, with \(|a| > 0 \), then there exists \(M \), such that \(e_{n} = 0 \) if \(n > M \). Hence \(f' = a k \) where \(k = \prod_{n=1}^{M} x_{n}^{e_{n}} \in G \).

Proof.
\[\int \left| \prod_{n=1}^{m-1} x_{n}^{e_{n}} - \prod_{n=1}^{m} x_{n}^{e_{n}} \right| d \mu = \int \left| 1 - \prod_{n=1}^{m} x_{n}^{e_{n}} \right| d \mu = e_{m}(1 - r_{m}) . \]

Hence if \(\{ \prod_{n=1}^{M} x_{n}^{e_{n}} \}_{m=1}^{\infty} \) converges in \(L_{1}(\mu) \) norm, then either \(\lim \sup_{n} r_{n} = 1 \) or \(\{ e_{n} \}_{n=1}^{\infty} \) is eventually zero.
For each positive integer \(n \) let \(A_n \) be the subset of \([0, 1]\) consisting of 1 and all finite products \(\prod_{i=1}^{m} r_{n_i} \) with \(n < n_i \) for \(i = 1, 2, \ldots, m \) and \(n \neq n_j \) if \(i \neq j \).

Lemma 3. If \(\limsup_n r_n < 1 \), then the closure of \(\hat{G} \) in the weak-* topology of \(L_\infty(\mu) \) is \(\{ ak : k \in \hat{G} \text{ and } a \in \bigcap_n \overline{A}_n \} \).

Proof. If \(a \in \bigcap_n \overline{A}_n \) then there is a sequence \(\{ \{ p_{i,n} \}_{i=1}^{m_n} \}_{n=1}^\infty \) of tuples of distinct integers, with \(p_{i,n} \geq n \), such that \(\lim_n \prod_{i=1}^{m_n} r_{p_{i,n}} = a \). If \(k \in \hat{G} \) then \(k \) is a product of \(\chi_p \)'s with \(p \leq M \) for some integer \(M \); set \(h_n = k \prod_{i=1}^{m_n} \chi_{p_{i,n}} \in \hat{G} \). If \(U \) is any open-compact rectangle in \(G \) of the form \(U = \{ g \in G : \chi_{\sigma_j}(g) = \sigma_j \} \) for \(j = 1, 2, \ldots, u \) where \(\{ \sigma_j \}_{j=1}^{u} \) is any \(u \)-tuple of 1's and -1's, then \(\int_U h_n \, d\mu = \prod_{i=1}^{m_n} r_{p_{i,n}} \int_U k \, d\mu \) provided \(n > q_j \) for \(j = 1, 2, \ldots, u \), and \(n > M \). Hence \(\lim_n \int_U h_n \, d\mu = \int_U ak \, d\mu \). From this fact and the fact that \(\{ h_n \}_{n=1}^\infty \) is uniformly bounded it follows that \(\lim_n h_n = ak \) in the weak-* topology of \(L_\infty(\mu) \).

Conversely, suppose \(h \) is in the weak-* closure of \(\hat{G} \) in \(L_\infty(\mu) \). Then \(h = f' \) for some \(f \in S \) and hence, by Lemma 2, \(h = ak \) for some \(a \) with \(|a| \leq 1 \) and \(k \in \hat{G} \). Let \(\{ k_a \} \) be a net in \(\hat{G} \) converging weak-* to \(ak \). Then \(\lim_n kk_a = a \). If \(a \) is not 1 then we may assume that \(kk_a = \prod_{i=1}^{m_n} \chi_{n_i,a} \), where \(n_{i,a} \neq n_{j,a} \) if \(i \neq j \). Then \(\lim \int kk_a \, d\mu = \lim \prod_{i=1}^{m_n} r_{n_{i,a}} = a \). Also, since the weak-* limit of \(\{ kk_a \} \) is a constant, it follows that, given \(n \), eventually \(n_{i,a} \geq n \) for \(i = 1, 2, \ldots, m_a \). Hence \(a \in \bigcap_n \overline{A}_n \). This completes the proof.

Theorem 1. If \(\limsup_n r_n < 1 \), \(k \in \hat{G} \), and \(0 < |a| < 1 \), then \(ak = f' \) for some \(f \) in the Shilov boundary of \(M(G) \) if and only if \(|a| \in \bigcap_n \overline{A}_n \).

Proof. If \(|a| \in \bigcap_n \overline{A}_n \) then, by Lemma 3, \(|a| \) is in the weak-* closure in \(L_\infty(\mu) \) of \(\hat{G} \). It follows that there exists \(h \) in the closure of \(\hat{G} \) in \(S \) such that \(h' = |a| \), that is, \(h \) is identically \(|a| \) on the carrier of \(\mu_S \) in \(S \). Then \(h \) is identically \(|a| \) on the carrier of \(\mu_S^n \) in \(S \) for each \(n \). Since \(0 < |a| < 1 \) it follows that carrier \(\{ \mu_S^n \} \cap \text{carrier}(\mu_S^n) = \emptyset \) for \(n \neq m \). Let \(\nu(V) = \int_V |a|^{-1} ak \, d\mu \) for each Borel set \(V \) of \(G \). Then carrier \(\{ \nu_S^n \} \cap \text{carrier}(\nu_S^n) = \emptyset \) for \(n \neq m \), and hence

\[
\| (\nu + \delta_e)^n \| = \sum_{m=0}^{n} \binom{n}{m} \nu^n = \sum_{m=0}^{n} \binom{n}{m} \|\nu^m\| = \sum_{m=0}^{n} \binom{n}{m} = 2^n,
\]

where \(e \) is the identity of \(G \) and \(\delta_e \) is the point measure at \(e \). Thus \(\nu + \delta_e \) has spectral radius 2 and it follows that there exists \(h_1 \) in the Shilov boundary of \(M(G) \), such that \(|(\nu + \delta_e)(h_1)| = |\nu(h_1) + 1| = 2 \). Since \(\|\nu\| = 1 \), \(\nu(h_1) \) must be 1. Then \(\int |a|^{-1} ak h_1 \, d\mu = 1 \) and we conclude that \(h_1' = |a|^{-1} ak \) and \((hh_1)' = ak \). Now the Shilov boundary is clearly invariant under multiplication by elements of \(\hat{G} \) and, since the
Shilov boundary is closed, it is invariant under multiplication by elements of the closure of \hat{G} in \hat{S}. Hence hh is in the Shilov boundary.

Conversely, suppose $ak = f'$ where f is in the Shilov boundary. By Theorem 3.3 of [1], f is the limit of a net $\{h_\alpha\} \subset H = \{h \in \hat{S}: |h(s)| = 0 \text{ or } 1 \text{ for } s \in S\}$. By Lemmas 1 and 2, there exist numbers a_α, $|a_\alpha| = 0$ or 1, and characters k_α, such that $h'_\alpha = a_\alpha k_\alpha$ for each α. Clearly, $\lim a_\alpha = a/|a|$ and $\lim k_\alpha k_\alpha = |a|k$ in the weak-* topology of $L_\alpha(\mu)$. Hence, by Lemma 3, $|a| \in \cap_n \overline{A}_n$.

Theorem 2. The Shilov boundary of $M(G)$ is a proper subset of \hat{S}.

Proof. If $\{r_n\}_{n=1}$ is chosen such that $0 < \lim sup_n r_n < 1$, then there is a positive number $a \in \cap_n \overline{A}_n$. Then $a = f_a'$ for some $f_a \in \hat{S}$, by Theorem 1, where f_a may be chosen such that $f_a(s) \geq 0$ for each $s \in S$. Hence, $f_a' \in \hat{S}$ for each complex number z with $Re z > 0$, and $f_a'' = a^\ast$. It follows that for each b in the unit disc there exists $f_b \in \hat{S}$, such that $f_b' = b$. By Theorem 1, f_b may be chosen from the Shilov boundary if and only if $|b| \in \cap_n \overline{A}_n$. However $\cap_n \overline{A}_n \subset [0, \lim sup_n r_n] \cup 1$ which is a proper subset of $[0, 1]$. This completes the proof.

References

Harvard University