ON THE CONTINUOUS FUNCTION SPACE OF A
BASICALLY DISCONNECTED SPACE

DWIGHT B. GOODNER

Throughout this note we shall let H be a Hausdorff space and let $C(H)$ be the space of bounded continuous real-valued functions on H, $C(H)$ having the usual supremum norm. Certain results (cf. e.g. [7]) suggest the possibility of showing that if a normed linear space X is complemented in every superspace (cf. [1, pp. 94 and 120]), then X is isomorphic to some space $C(H)$ over a Stone space H, and that if X is isometric to some $C(H)$, then H is basically disconnected. The purpose of this note is to extend a result of Dean [2, p. 391] for $C(H)$ where H is extremally disconnected and compact to the case where H is basically disconnected and normal. Our proof rests on an extension of James' technique [6, p. 900] for embedding the space (m) of bounded sequences in $C(H)$ where H is infinite, extremally disconnected and compact.

Let r be a real number. We shall say that H is basically disconnected if and only if the closure of every open set of the form

$$G(f, r) = \{h : f(h) < r, h \in H, f \in C(H)\}$$

is open. We note that an extremally disconnected space is basically disconnected, that a basically disconnected space is totally disconnected, and that in a normal space an open set is an F_σ set if and only if it is a set of the form $G(f, r)$ (cf. [3, p. 15]).

Our first lemma contains a result of Dean [2, p. 391].

Lemma 1. If H is an infinite basically disconnected normal Hausdorff space, if W is an infinite open and closed subset of H, and if h' is a point in W, then $W - \{h'\}$ contains an infinite open and closed set.

Proof. Suppose $W - N$ is finite whenever $N \subseteq W$ is a neighborhood of h'. Then each point $h \neq h'$ in W is open. Hence each countably infinite subset H' of $W - \{h'\}$ is an open F_σ set and its closure $\overline{H'} = H' \cup \{h'\}$ is open. It follows that if H' and H'' are countably infinite subsets of $W - \{h'\}$, then $\overline{H'} \cap \overline{H''} \supset \{h'\} \neq \emptyset$ even though H' and H'' may be disjoint. But this is impossible because in a basically disconnected normal Hausdorff space, disjoint open F_σ sets...
have disjoint closures. Hence there is a neighborhood \(N' \) of \(h' \) such that \(N' \subseteq W \) and \(W - N' \) is infinite. If \(f \in C(H) \) takes the value 0 on \(W - N' \), 1 at \(h' \), and 1 on \(H - W \), the closure of \(\{ h : f(h) < \frac{1}{2} \} \) is an infinite open and closed subset of \(W - \{ h' \} \).

Lemma 2. If \(H \) is an infinite basically disconnected normal Hausdorff space, then \(H \) contains an infinite sequence \(\{ V_i \} \) of pairwise disjoint, nonempty, open and closed sets. If \(V \) is the closure of \(\bigcup_{i=1}^{\infty} V_i \), then \(V \) is open and closed.

Proof. We will construct the sequence inductively. Let \(h_1 \) be a point in \(H \). By Lemma 1 there is an infinite open and closed subset \(N_1 \subseteq H - \{ h_1 \} \). Let \(V_1 = H - N_1 \). We note that \(h_1 \in V_1 \) and \(V_1 \) is open and closed. Suppose we have chosen pairwise disjoint open and closed sets \(V_1, V_2, \ldots, V_k \) so that \(h_i \in V_i \), and \(N_k = H - \bigcup_{i=1}^{k} V_i \) is an infinite open and closed subset of \(H \). Let \(h_{k+1} \) be any point in \(N_k \). Then by Lemma 1 there is an infinite open and closed set \(N_{k+1} \subseteq N_k - \{ h_{k+1} \} \). Let \(V_{k+1} = N_k - N_{k+1} \). Then \(h_{k+1} \in V_{k+1} \) and \(V_{k+1} \) is open and closed. This completes the inductive construction.

Since each \(V_i \) is an open \(F_\sigma \) set, \(\bigcup_{i=1}^{\infty} V_i \) is an open \(F_\sigma \) set and it follows that \(V \) is open and closed. This completes the proof.

James [6, p. 900] embedded the space \((m)\) of bounded sequences in \(C(H) \), \(H \) an infinite extremally disconnected compact Hausdorff space, by using an infinite sequence of pairwise disjoint open and closed subsets of \(H \). Using Lemma 2 and James' procedure, we may embed \((m)\) in \(C(H) \) where \(H \) is an infinite basically disconnected normal Hausdorff space (cf. [5, p. 257]). If \(\{ h_i \}_{i=1}^{\infty}, \{ V_i \}_{i=1}^{\infty} \) and \(V \) are as in Lemma 2, a suitable embedding, \(Q \), may be defined by \(Q(x) = f \) implies

\[
Q(x)(h) = \begin{cases}
0 & \text{if } h \in H - V, \\
x(i) & \text{if } h \in V_i,
\end{cases}
\]

where \(x \in (m) \) and \(f \in C(H) \).

Our theorem contains a result of Dean [2, p. 391].

Theorem. Let \(H \) be an infinite basically disconnected normal Hausdorff space and let the space \((m)\) of bounded sequences be embedded in \(C(H) \) as above; that is, let \(Q((m)) = (m') \subseteq C(H) \). Then a subspace \(B \) of \(C(H) \) complementary to \((m')\) is isomorphic to \(C(H) \) or is finite dimensional.

Proof. Let \(f \in C(H) \). Define \(Tf \) to be the element of \((m')\) for which \(Tf(h_i) = f(h_i) \) for \(h_i \) and \(h_i \) in \(V_i \) as in Lemma 2. Then \(T \) is a projection of \(C(H) \) onto \((m')\), and \(C(H) \) is the direct sum of \((m')\) and the null.
space Y of T; that is, $C(H) = Y \oplus (m')$ (cf. [4, p. 91], [8, p. 538]). If the set H' of points in H and not in the closure of $\cup_{i=1}^{n} \{h_i\}$ is finite, then Y is finite dimensional (cf. [2, p. 392]).

If H' is infinite, then H' contains an infinite open and closed subset H''. For suppose each V_i is finite. Then each h_i is open and $\cup_{i=1}^{n} \{h_i\}$ is an open F_{σ} set. It follows that the closure of $\cup_{i=1}^{n} \{h_i\}$ is open and, hence, that H' itself is an infinite open and closed set. Alternatively, suppose some V_i is infinite. Then, by Lemma 1, $V_i - \{h_i\}$ contains an infinite open and closed subset H''. In either case, by Lemma 2, H'' contains an infinite sequence $\{V'_i\}_{i=1}^{\infty}$ of nonempty, pairwise disjoint, open and closed subsets. Let (m'') be the embedding of (m) in $C(H)$ determined by the sequence $\{V'_i\}_{i=1}^{\infty}$. Then (m'') is a subspace of $Y = Z \oplus (m'')$ and $C(H) = Z \oplus (m') \oplus (m'')$.

Let J be an isomorphism of (m'') onto $(m') \oplus (m'')$. Define M on Y to $C(H)$ by $M(z + x'') = z + Jx''$ for every z in Z and x'' in (m''). Then M is an isomorphism of Y with $C(H)$ (cf. [2, p. 391]).

We have shown that Y is either finite dimensional or isomorphic to $C(H)$. To complete the proof, we need only show that B and Y are isomorphic.

Since both B and Y complement (m') in $C(H)$, $C(H) = B \oplus (m') = Y \oplus (m')$. Let $P = I - T$ where I is the identity transformation of $C(H)$ onto $C(H)$ and T is the projection defined above. Since $Px' = 0$ for x' in (m'), $PB = Y$. If $Pb = 0$ for b in B, then b is also in (m'), and it follows that $b = 0$. Hence P is an isomorphism of B with Y, which completes the proof.

References

6. R. C. James, Projections in the space (m), Proc. Amer. Math. Soc. 6 (1955), 899-902.

Florida State University