THE DEGREE OF APPROXIMATION BY LINEAR OPERATORS

PHILIP C. CURTIS, JR.¹

I. Introduction. In 1959 Berman [1] observed the following: If \(T \) denotes the unit circle, \(C(T) \) the continuous functions on \(T \), and \(E_n(f) \) the error in the best approximation in the sup norm to \(f \) by a trigonometric polynomial of order \(n \), then there could not exist a sequence of linear operators \(T_n \) mapping \(C(T) \) into the trigonometric polynomials of order \(n \), which satisfied

\[
\|f - T_nf\| \leq KE_n(f)
\]

for some fixed constant \(K \) and \(f \in C(T) \). The reason for this is easy to see. Suppose (1) is satisfied for some sequence \(\{T_n\} \) and all \(f \in C(T) \). If \(\Pi_n \) denotes the space of trigonometric polynomials of order \(\leq n \), then for \(f \in \Pi_n, E_n(f) = 0 \). Hence, \(T_nf = f \) or \(T_{2n} = T_n \). But by a theorem of Nikolaev [3, p. 494], \(\|T_n\| \geq K \log n \). Since \(E_n(f) \to 0 \), this is a contradiction. A similar observation holds for \(L_1(T) \) where \(E_n(f) \) is the best approximation by a trigonometric polynomial of order \(n \) to \(f \) in the \(L_1 \) norm.

In this note I would like to elaborate on this observation of Berman's and make some applications to Fourier series which appear to be new. Let \(T_n \) be a sequence of bounded linear operators from \(C(T) \) into \(\Pi_n \). In place of \(E_n(f) \) let \(D_n(f) \) be any continuous mapping from \(C(T) \) to the non-negative reals which vanishes on \(\Pi_n \). In addition to the case \(D_n(f) = E_n(f) \) we may take \(D_n(f) = \|f - P_nf\| \) where \(P_n \) is a bounded projection of \(C(T) \) onto \(\Pi_n \). Then, if \(T_{2n} \neq T_n \) for each \(n \), it

Received by the editors February 20, 1964.

¹ The research reported here was supported by TRW Space Technology Laboratories and by the National Science Foundation.
is never true that \(\|f - T_n f\| = O(D_n(f)) \) for all \(f \). This is still true even if \(\sup_n D_n(f) = \infty \) for some \(f \). Specifically the set of functions \(f \in C(T) \) for which there exist constants \(n_f, k_f \) depending on \(f \) for which
\[
\|f - T_n f\| \leq k_f D_n(f), \quad n \geq n_f,
\]
is of the first category in \(C(T) \). An interesting consequence of this lemma is obtained by taking \(D_n(f) = \|f - S_n f\|, \) \(S_n f \) the \(n \)th partial sum of the Fourier series and \(T_n f = \sigma_n f = (S_1 f + \cdots + S_n f)/n \). Then of course, \(\|f - \sigma_n f\| \to 0 \), and, therefore, the set of functions \(f \) such that no sequence \(S_n f \to f \) uniformly on \(T \) is a set of the first category in \(C(T) \). At first glance this appears mildly astonishing since those \(f \) for which \(\sup_n \|S_n f\| = \infty \) are of the second category. This set of the first category is not empty, however, since in 1944 Menshov \([2]\) constructed an example of a continuous function \(f \) such that for each sequence \(S_n f \) there exists a point \(x \in T \) such that \((S_n f)(x) \) diverges at \(x \).

The observations concerning norm convergence hold verbatim in \(L_1 \). Also \(\{f \in L_1 : \lim \inf_n \|f - S_n f\|_1 > 0\} \) is not empty. For if \(\{a_n\} \) is convex, and \(a_n \to 0 \), then \(\frac{1}{2} a_0 + \sum_{n=1}^\infty a_n \cos nx \) defines a function in \(L_1 \) for which \(\|f - S_n f\|_1 = \pi a_n \|S_n f\| + o(1) \). Thus \(\lim_n \|S_n f\|_1 \) may be infinite. (See \([4, pp. 182-185]\) for details.)

II. The following elementary result is the key to these observations.

Lemma. Let \(E \) be a Banach space, \(\{E_n\} \) a sequence of closed subspaces satisfying \(E_n \subseteq E_{n+1} \) and \(\cap \cup E_n = E \). For each \(n \) let \(T_n \) be a bounded linear operator mapping \(E \) into \(E_n \) and let \(D_n \) be a continuous function mapping \(E \) into the non-negative reals which vanishes on \(E_n \). Let \(F_{k,n} = \{x : \|x - T_n x\| \leq k D_m(x), m \geq n\} \). Then \(T_{k,n} \) is a closed set, and if \(F_{k,n} \) contains an open set it follows that for some integer \(m_0 \), \(T_n = T_{m_0} \) for \(m \geq m_0 \).

Proof. In the applications we usually have either \(D_n(x) = \|x - P_n x\| \) where \(P_n \) is a projection of \(E \) onto \(E_n \) or \(D_n(x) = \inf_{y \in E_n} \|x - y\| \). Suppose there exists an \(x_0 \in E \), \(\delta > 0 \), such that \(\{x : \|x - x_0\| < \delta\} \subset F_{k,n} \). By the density of \(\cup_j E_j \) we may assume \(x_0 \in E_{m_0} \) for some \(m_0 \geq n \). For \(m \geq m_0 \), if \(x \in E_m \) and \(\|x\| < \delta \), then \(x + x_0 \in F_{k,n} \) and
\[
\|x + x_0 - T_m(x + x_0)\| \leq k D_m(x + x_0) = 0.
\]
Therefore, \(T_m x = x \), and by the homogeneity of \(T_m \), \(T_m x = x \) for all \(x \in E_m \), or \(T_n = T_m \).

Corollary. Under the same assumptions if \(T_n \neq T_m \) for each \(m \), then
$F = \{ x \in E : \text{there exist constants } n_x, k_x \text{ for which } \| x - T_m x \| \leq k_x D_m(x), \ m \geq n_x \}$ is of the first category in E.

Proof. $F = \bigcup F_{k,n}, \ k, n = 1, 2, \ldots$.

The observations concerning Fourier series are special cases of the following

Corollary. If $T_m x \to x$ for each x and $T_m^k \neq T_m$ for each m then \(\{ x : \lim \inf_m D_m(x) > 0 \} \) is of the first category in E.

The lemma, together with Nikolaev’s theorem and the uniform boundedness principle, yields a sharper form of Berman’s theorem.

Corollary. Let T_m be bounded linear operators mapping $C(T)$ into Π_m. Then \(\{ f : \| f - T_m f \| \leq k E_m(f), \ m \geq n \} \) is of the first category in $C(T)$.

If T_m is the Fejer operator σ_m, then there are nonconstant functions with this property. For by a classical theorem of Bernstein’s [3, p. 99] if $\alpha_m \downarrow 0$, there exists an $f \in C(T)$ such that $E_m(f) = \alpha_m$. But if $\alpha_m = 1/m^\alpha$, $0 < \alpha \leq 1$, then for such f,

$$\| \sigma_m f - f \| \leq \frac{k}{m^\alpha},$$

cf. [4, pp. 120–123].

Bibliography

University of California, Los Angeles