## A theorem on homotopically equivalent $(2k+1)$-manifolds

HTML articles powered by AMS MathViewer

- by Yuen-fat Wong
- Proc. Amer. Math. Soc.
**16**(1965), 1022-1025 - DOI: https://doi.org/10.1090/S0002-9939-1965-0193638-X
- PDF | Request permission

## References

- William Browder,
*Homotopy type of differentiable manifolds*, Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993) London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 97–100. MR**1388298**, DOI 10.1017/CBO9780511662676.006 - Morris W. Hirsch,
*On combinatorial submanifolds of differentiable manifolds*, Comment. Math. Helv.**36**(1961), 103–111. MR**133833**, DOI 10.1007/BF02566895 - P. J. Hilton and S. Wylie,
*Homology theory: An introduction to algebraic topology*, Cambridge University Press, New York, 1960. MR**0115161**, DOI 10.1017/CBO9780511569289 - John Milnor,
*A procedure for killing homotopy groups of differentiable manifolds.*, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 39–55. MR**0130696** - John Milnor,
*On simply connected $4$-manifolds*, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122–128. MR**0103472** - S. P. Novikov,
*A diffeomorphism of simply connected manifolds*, Dokl. Akad. Nauk SSSR**143**(1962), 1046–1049 (Russian). MR**0158405** - R. Penrose, J. H. C. Whitehead, and E. C. Zeeman,
*Imbedding of manifolds in euclidean space*, Ann. of Math. (2)**73**(1961), 613–623. MR**124909**, DOI 10.2307/1970320 - S. Smale,
*On the structure of manifolds*, Amer. J. Math.**84**(1962), 387–399. MR**153022**, DOI 10.2307/2372978 - C. T. C. Wall,
*Classification of $(n-1)$-connected $2n$-manifolds*, Ann. of Math. (2)**75**(1962), 163–189. MR**145540**, DOI 10.2307/1970425 - J. H. C. Whitehead,
*Combinatorial homotopy. I*, Bull. Amer. Math. Soc.**55**(1949), 213–245. MR**30759**, DOI 10.1090/S0002-9904-1949-09175-9

## Bibliographic Information

- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**16**(1965), 1022-1025 - MSC: Primary 57.10
- DOI: https://doi.org/10.1090/S0002-9939-1965-0193638-X
- MathSciNet review: 0193638