A representation theorem for a continuous linear transformation on a space of continuous functions
HTML articles powered by AMS MathViewer
- by Don H. Tucker
- Proc. Amer. Math. Soc. 16 (1965), 946-953
- DOI: https://doi.org/10.1090/S0002-9939-1965-0199722-9
- PDF | Request permission
References
- N. Dunford and J. T. Schwartz, Linear operators, Vol. I, Interscience, New York, 1958.
Mark Gowurin, Über die Stieltjessche Integration abstrakter Functionen, Fund. Math. 27 (1936), 254-268.
- L. C. Kurtz and D. H. Tucker, Vector-valued summability methods on a linear normed space, Proc. Amer. Math. Soc. 16 (1965), 419–428. MR 199592, DOI 10.1090/S0002-9939-1965-0199592-9
- J. S. MacNerney, Stieltjes integrals in linear spaces, Ann. of Math. (2) 61 (1955), 354–367. MR 67354, DOI 10.2307/1969918 F. Riesz, Sur les opérations functionelles linéaires, C. R. Acad. Sci. 149 (1909), 974-977.
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Don H. Tucker, A note on the Riesz representation theorem, Proc. Amer. Math. Soc. 14 (1963), 354–358. MR 145334, DOI 10.1090/S0002-9939-1963-0145334-0
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 16 (1965), 946-953
- MSC: Primary 47.25
- DOI: https://doi.org/10.1090/S0002-9939-1965-0199722-9
- MathSciNet review: 0199722