Contractible complexes in $S^{n}$
HTML articles powered by AMS MathViewer
- by Leslie C. Glaser
- Proc. Amer. Math. Soc. 16 (1965), 1357-1364
- DOI: https://doi.org/10.1090/S0002-9939-1965-0184240-4
- PDF | Request permission
References
- R. H. Bing, A set is a $3$ cell if its cartesian product with an arc is a $4$ cell, Proc. Amer. Math. Soc. 12 (1961), 13–19. MR 123303, DOI 10.1090/S0002-9939-1961-0123303-2
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331–341. MR 133812, DOI 10.2307/1970177
- M. L. Curtis, Cartesian products with intervals, Proc. Amer. Math. Soc. 12 (1961), 819–820. MR 126286, DOI 10.1090/S0002-9939-1961-0126286-4 —, Regular neighborhoods, mimeographed notes, Florida State University, pp. 1-21.
- P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR 0115161, DOI 10.1017/CBO9780511569289
- Barry Mazur, A note on some contractible $4$-manifolds, Ann. of Math. (2) 73 (1961), 221–228. MR 125574, DOI 10.2307/1970288
- M. H. A. Newman, Boundaries of ULC sets in Euclidean $n$-space, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 193–196. MR 25731, DOI 10.1073/pnas.34.5.193
- Valentin Poenaru, Les decompositions de l’hypercube en produit topologique, Bull. Soc. Math. France 88 (1960), 113–129 (French). MR 125572, DOI 10.24033/bsmf.1546
- John R. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. 66 (1960), 485–488. MR 124905, DOI 10.1090/S0002-9904-1960-10511-3
- John Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481–488. MR 149457, DOI 10.1017/S0305004100036756 J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. 45 (1939), 243-327.
- E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341–358. MR 156351, DOI 10.1016/0040-9383(63)90014-4 —, The generalized Poincaré conjecture, Bull. Amer. Math. Soc. 67 (1961) 270.
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 16 (1965), 1357-1364
- MSC: Primary 55.70
- DOI: https://doi.org/10.1090/S0002-9939-1965-0184240-4
- MathSciNet review: 0184240