A PROBABILITY BOUND FOR INTEGRALS WITH
RESPECT TO STOCHASTIC PROCESSES WITH
INDEPENDENT INCREMENTS

D. L. HANSON AND L. H. KOOPMANS

1. Introduction. The purpose of this paper is to establish the following theorem.

Theorem. Let $X = \{X_t : -\infty < t < \infty \}$ be a real-valued stochastic process with independent increments. Let μ be a σ-finite measure on the real line \mathbb{R} which has the property that for every $\beta > 0$ there exists $T_\beta > 0$ such that whenever $|X| \leq T_\beta$ and $-\infty < s < t < \infty$,

\begin{equation}
E \exp(\lambda[(X_t - X_s) - E(X_t - X_s)]) \leq \exp(\beta |X| \beta(t, s)).
\end{equation}

Then for every function $f \in L_1(\mu) \cap L_\infty(\mu)$ (over \mathbb{R}) for which $\|f\|_1 \leq 1$, the random variable $\int f(t)d[X_t - EX_t]$ is well defined as a limit-in-the-mean of order 2, and for every $\epsilon > 0$ there exists a positive number $\rho < 1$ (depending only on ϵ) such that

\begin{equation}
P\left[\left| \int f(t)d[X_t - EX_t] \right| > \epsilon \right] \leq 2\rho^{1/\|f\|_\infty}.
\end{equation}

If $f(s, t)$ is a real-valued function on $\mathbb{R} \times \mathbb{R}$ such that

$f(s, \cdot) \in L_1(\mu) \cap L_\infty(\mu), \quad \|f(s, \cdot)\|_1 \leq 1$ and $\|f(s, \cdot)\|_\infty = 1/\gamma(s)$

then if the stochastic process $\{Y_s : -\infty < s < \infty \}$ is defined by

$Y_s = \int f(s, t)d[X_t - EX_t],$

it will follow as an immediate consequence of the Theorem that for every $\epsilon > 0$ there exists $0 < \rho < 1$ such that

$P[|Y_s| > \epsilon] \leq 2\rho^{\gamma(s)}.$

Thus, our Theorem provides a useful probability bound for a large class of stochastic processes derived from processes with independent increments. In particular, if s^* is held fixed and χ_s denotes the set characteristic function of the interval $(s^*, s]$, then taking

Received by the editors November 13, 1964.

1 Part of this work was carried out while the authors were at Sandia Corporation and was supported by the United States Atomic Energy Commission.

1173
we obtain

\[(1.3) \quad P[\left| (X_s - X_{s^*}) - E(X_s - X_{s^*}) \right| > \varepsilon \mu(s^*, s)] \leq 2p^{\mu(s^*, s)}.
\]

If \(\mu(s^*, s) \to \infty \) as \(s \to \infty \), (1.3) yields a bound on the rate at which the increments of the process converge to their expectations.

We will show in §3 that our Theorem is applicable to the Wiener and Poisson processes and will derive the appropriate versions of (1.3). We will also indicate how the Theorem implies a convergence rate theorem for a generalized version of the law of large numbers for independent random variables first given in [3].

2. Proof of the theorem. The theorem will be proved in two parts. First, we will establish the existence of \(\int f(t) d[X_t - EX_t] \) as the limit-in-the-mean of certain "natural" approximating sums. Inequality 1.2 will be derived in the second part of the proof.

Part 1 of proof. We first establish the following lemma.

Lemma. Let \(X \) be a random variable with \(E X = 0 \) and with the property that for every \(\beta > 0 \) there exists \(T_\beta > 0 \) such that for \(|X| \leq T_\beta \),

\[(2.1) \quad E e^{\lambda x} \leq e^{\beta R |\lambda|}.
\]

Then there exists a number \(K_\beta > 0 \), depending on \(\beta \) and \(T_\beta \) but not otherwise on the distribution of \(X \), such that

\[\lambda^2 E X^2 \leq K_\beta R |\lambda|, \quad \text{for} \quad |\lambda| \leq T_\beta.
\]

Proof. From (2.1) it follows that for every \(\beta > 0 \) there exists \(\varepsilon_\beta > 0 \) such that for \(|\lambda| \leq T_\beta \),

\[E e^{\lambda x} \leq 1 + (\beta + \varepsilon_\beta)|\lambda|R.
\]

Then, \(E(e^{\lambda x} + e^{-\lambda x}) \leq 2 + 2(\beta + \varepsilon_\beta)|\lambda|R \) for \(|\lambda| \leq T_\beta \) and, since

\[e^{\lambda x} + e^{-\lambda x} = \sum_{k=0}^{\infty} \frac{(\lambda x)^{2k}}{(2k)!} \geq 2 + \frac{(\lambda x)^2}{2},
\]

it follows that

\[\lambda^2 E X^2 \leq 4(\beta + \varepsilon_\beta) R |\lambda|,
\]

as was to be shown.

Without loss of generality we will assume \(E(X_s - X_t) = 0 \) for all \(-\infty < t < \infty\). Suppose \(f \in L_1(\mu) \cap L_\infty(\mu) \) and \(\|f\|_1 \leq 1. \) Then there
exists a sequence of step functions $f_n = \sum c_n \chi_{\Delta_n}$ such that $\|f_n - f\|_1 \to 0$, $\|f_n\|_1 \leq 1$ and $\sup_i |c_n| \leq \|f\|_\infty$ for all n. Here, χ_{Δ_n} is the set characteristic function of $\Delta_n = (a_{n,i-1}, a_{n,i}]$, where $-\infty = a_{n,-\infty} < \cdots < a_{n,i-1} < a_{n,i} < \cdots < a_{n,\infty} = \infty$, and c_n is the value of f_n on Δ_n. All but a finite number of the c_n can be taken equal to zero for each n.

If $\Delta = (a, b]$, let $X(\Delta) = X_b - X_a$. For each n form the stochastic integral

$$Y_n = \int f_n(t) dX_t = \sum c_n \chi_{\Delta_n}.$$

We will show that the sequence $\langle Y_n \rangle$ is a Cauchy sequence in the stochastic Lebesgue space \mathcal{L}_2.

Fix m and n and let Δ_i be the element with index i of the partition obtained by ordering the merged partition $\{\Delta_m \cap \Delta_n : -\infty \leq i, j \leq \infty\}$. Let $c^{(m)}_i$ and $c^{(n)}_i$ be the values of f^m and f^n respectively on Δ_i. Then, by the independent increments assumption

$$E(Y_m - Y_n)^2 = \sum (c^{(m)}_i - c^{(n)}_i)^2 EX^2(\Delta_i).$$

Let $r = 2 \|f\|_\infty$, and let

$$\lambda_t = \frac{c^{(m)}_i - c^{(n)}_i}{r} \quad \text{for fixed } \beta > 0.$$

Then, by Condition 1.1 and the lemma,

$$E(Y_m - Y_n)^2 = \frac{r^2}{T_2} \sum \lambda_t EX^2(\Delta_i) \leq \frac{K_\beta r^2}{T_2} \sum \lambda_t \mu(\Delta_i) \leq \frac{K_\beta r}{T_2} \sum \lambda_t \left| c^{(m)}_i - c^{(n)}_i \right| \mu(\Delta_i) \leq \frac{2K_\beta \|f\|_\infty}{T_2} \|f_m - f_n\|_1.$$

Then, $\langle Y_n \rangle$ is Cauchy in \mathcal{L}_2 which implies the existence of $Y \in \mathcal{L}_2$ such that $E(Y - Y_n)^2 \to 0$. It is easily shown that Y is independent of the sequence $\langle f_n \rangle$ tending to f, so it is proper to write $Y = \int f(t) dX_t$ (see, e.g., [2]).
Part 2 of proof. Fix $\epsilon > 0$. By a well-known inequality \[4, p. 157\], for all $\lambda \geq 0$,

$$P[\pm Y_n > \epsilon] = P\left[\pm \sum_i c_n_i X(\Delta_n_i) > \epsilon\right]$$

$$\leq E \exp\left\{\pm \lambda \sum_i c_n_i X(\Delta_n_i) - \lambda \epsilon\right\}$$

$$= e^{-\lambda \epsilon} \prod_i E \exp[\pm \lambda c_n_i X(\Delta_n_i)].$$

Set $\beta = \epsilon/2$ and $\lambda = T_\beta/\|f\|_\infty$. Then, $|\lambda c_n_i| \leq T_\beta$ and from Condition 1.1,

$$P[\pm Y_n > \epsilon] \leq e^{\lambda \epsilon} \exp\{\beta |\lambda| \|f\|_\infty\}$$

$$\leq \exp(-T_\beta\epsilon/2) \exp(\|f\|_\infty \epsilon).$$

Inequality (1.2) now follows with $\rho = \exp(-T_\beta\epsilon/2)$ because the L_2 convergence of $\{Y_n\}$ implies $P[\pm Y_n > \epsilon] \rightarrow P[\pm \int f(t)dX_t > \epsilon]$ and because of the inequality $P[X > \epsilon] \leq P[X > \epsilon] + P[-X > \epsilon]$.

3. Applications of the Theorem. 1. If X is the Wiener process, $X_t: N(0, \sigma^2 t)$, Condition (1.1) is satisfied with $\mu = \sigma^2 t$ Lebesgue measure and $T_\beta = 2\beta$. Then, for $0 \leq s < t < \infty$, Inequality (1.3) becomes

$$P[|X_t - X_s| \leq \sigma^2 (t - s)\epsilon] \leq 2\rho^{\sigma^2 (t-s)}.$$

This is comparable with the inequality given in \[2, p. 392\].

2. If X is a Poisson process, $X_t - X_s: \sigma(\mu_{s,t})$, where $\mu_{s,t} = \mu(s, t)$ for a σ-finite measure μ, then Condition (1.1) is satisfied with this measure and T_β the root of largest modulus of the equation $e^\beta - \lambda - 1 = \beta |\lambda|$. It follows from Inequality (1.3) that for $-\infty < s < t < \infty$

$$P[|X_t - X_s| - \mu_{s,t}| > \epsilon \mu_{s,t}] \leq 2\rho^{\mu_{s,t}}.$$

3. Let μ be counting measure on the integers and let $Y_n = X_n - X_{n-1}$. If $f \in L_1(\mu) \cap L_2(\mu)$ is the doubly infinite sequence $(a_k)_{-\infty}^{\infty}$, then the following is an immediate corollary of our Theorem.

Corollary. Let $(Y_n)_{-\infty}^{\infty}$ be an independent sequence of random variables such that $E Y_n = 0$ all n, and for every $\beta > 0$ there exists $T_\beta > 0$ such that for $|\lambda| \leq T_\beta$,

$$E \exp(\lambda Y_n) \leq \exp(\beta |\lambda|)$$ uniformly in n.

Let $(a_k)_{-\infty}^{\infty}$ be a sequence of real constants such that

(i) $\sum_{k=-\infty}^{\infty} |a_k| \leq 1$,

(ii) \(\max_k |a_k| = M < \infty \).

Then, \(S = \sum_{k=-\infty}^{\infty} a_k Y_k \) is well defined as a limit-in-the-mean of order 2 of its partial sums and for every \(\epsilon > 0 \) there exists a positive number \(\rho < 1 \) such that

\[
P[|S| > \epsilon] \leq 2\rho^{1/M}.
\]

This theorem generalizes a convergence rate result for the law of large numbers originally established by Cramér [1].

A slightly stronger version of this theorem was proved in [3].

REFERENCES

