A HÖLDER TYPE INEQUALITY FOR SYMMETRIC MATRICES WITH NONNEGATIVE ENTRIES

G. R. BLAKLEY AND PRABIR ROY

The element \(w = (w_1, w_2, \cdots, w_n) \) of the \(n \)-dimensional real euclidean vector space \(R^n \) is nonnegative if \(0 \leq w_j \) for each \(j \). If \(1 \leq k \leq n \) then \(w(k) = (w(k)_1, w(k)_2, \cdots, w(k)_{n-1}) \in R^{n-1} \) is defined by setting \(w(k)_i = w_i \) if \(1 \leq i < k \), \(w(k)_i = w_{i+1} \) if \(k \leq i < n \). The real \(n \) by \(n \) matrix \(S = (s_{ij}) \) is nonnegative if \(0 \leq s_{ij} \) for each \(i, j \). If \(1 \leq k \leq n \) let \(S(k) \) be the \(n-1 \) by \(n-1 \) matrix obtained by deleting the \(k \)th row and \(k \)th column of \(S \). \(W_n \) is the boundary of the nonnegative cone in \(R_n \) and \(U_n = \{ u \in R_n : (u, u) = 1 \} \) is the unit sphere.

Theorem. If \(S \) is a nonnegative symmetric \(n \) by \(n \) matrix, \(u \in U_n \) is nonnegative and \(k \) is a positive integer then \((u, Su)^k \leq (u, S^k u) \). If \(k > 1 \) equality holds if and only if \(u \) is a characteristic vector of \(S \) or \((u, S^k u) = 0 \).

Proof. There is no loss of generality in ignoring trivial cases and assuming that \(k > 1 \), \(n > 1 \), that \(|\lambda| \leq 1 \) for each characteristic value \(\lambda \) of \(S \) and that there is a characteristic value \(\lambda^* \) of \(S \) for which \(|\lambda^*| = 1 \). There is thus a nonnegative characteristic \(n \)-vector \(v \in U_n \) of \(S \) whose corresponding characteristic value \(\lambda \) is 1 [1, p. 80]. Now proceed by induction on \(n \).

If \(w \in W_n \cap U_n \) there is some \(j \) such that \(w(j) \in U_{n-1} \). If

\[
(w(j), S(j)w(j))^k < (w(j), S^k w(j))
\]

then

\[
(w, Sw)^k = (w(j), S(j)w(j))^k < (w(j), S^k w(j)) \leq (w, S^k w).
\]

If, on the other hand, \(0 < (w(j), S(j)w(j))^k = (w(j), S^k w(j)) \) then \(w(j) \) is, as a consequence of the induction hypothesis, a characteristic \((n-1)\)-vector of \(S(j) \) and there is some \(\lambda > 0 \) such that \(S(j)w(j) = \lambda w(j) \). Hence \(Sw = \lambda w + p \), where \(p \) is a nonnegative \(n \)-vector for which \((p, w) = 0 \). If \(w \) is not a characteristic vector of \(S \) then \((p, p) > 0 \) and it is easy to verify, using the symmetry of \(S \), that

\[
(w, S^k w) \geq (w, Sw)^k = (w, S^k w) + (w, S^{k-1} p) = \lambda^k + \lambda^{k-1}(p, p) > \lambda^k = (w, Sw)^k.
\]

Thus the truth of the theorem in the \((n-1)\)-dimensional case entails its truth for vectors in \(W_n \).

Received by the editors November 2, 1963 and, in revised form, October 5, 1964.

1244
Suppose the nonnegative vector \(u \in U_n \) is not a characteristic vector of \(S \). Let \(m \in U_n \) be a nonnegative characteristic vector of \(S \) with characteristic value 1 and let \(q \) be the unique element of \(U_n \) orthogonal to \(m \) such that \(u \) is between \(q \) and \(m \) in the sense that there is some \(\eta_0, 0 < \eta_0 < 1 \), for which \(u = (1 - \eta_0)^{1/2} m + \eta_0 q \). Let \(\alpha = (q, S^k q) - 1, \beta = (q, S q) - 1 \). Notice that \(\beta < 0 \), for otherwise it would follow from the normalization of \(S \) that \(q \) would be a characteristic vector of \(S \) with characteristic value 1, whence so would \(u \), contrary to assumption. There is some \(w \in W_n \cap U_n \) which lies between \(u \) and \(q \), that is there is some \(\gamma_1, \gamma_0 < \gamma_1 < 1 \), such that \((1 - \gamma_0)^{1/2} m + \gamma_1 q = w \).

Let \(f(\lambda) = \lambda^k - \lambda \alpha / \beta - 1 + \alpha / \beta \) for each real \(\lambda \). Then

\[
f(1) = (m, S^k m) - (m, S^k m) = 0,
\]

\[
f(1 + \eta_0 \beta) = (u, S^k u) - (u, S^k u), \quad \text{and}
\]

\[
f(1 + \eta_1 \beta) = (w, S w) - (w, S^k w) \leq 0
\]
as a consequence of the symmetry of \(S \). Since \(0 < 1 + \eta_0 \beta < 1 + \eta_1 \beta < 1 \) and \(f \) is a strictly convex \([2, \text{p. 75}]\) function of a positive argument strict inequality holds at \(u \).

References

University of Illinois and University of Wisconsin