Lie groups and products of spheres
Author:
P. G. Kumpel
Journal:
Proc. Amer. Math. Soc. 16 (1965), 1350-1356
MSC:
Primary 57.40
DOI:
https://doi.org/10.1090/S0002-9939-1965-0185037-1
MathSciNet review:
0185037
Full-text PDF
References | Similar Articles | Additional Information
- [1] José Adem, The relations on Steenrod powers of cohomology classes. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 191–238. MR 0085502
- [2] Armand Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. (2) 13 (1961), 216–240 (French). MR 0147579, https://doi.org/10.2748/tmj/1178244298
- [3] Armand Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397–432. MR 0072426, https://doi.org/10.1090/S0002-9904-1955-09936-1
- [4] A. Borel and C. Chevalley, The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. No. 14 (1955), 1–9. MR 0069180
- [5] Raoul Bott and Hans Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964–1029. MR 0105694, https://doi.org/10.2307/2372843
- [6] Allan Clark, On 𝜋₃ of finite dimensional 𝐻-spaces, Ann. of Math. (2) 78 (1963), 193–196. MR 0151975, https://doi.org/10.2307/1970508
- [7] Bruno Harris, Suspensions and characteristic maps for symmetric spaces, Ann. of Math. (2) 76 (1962), 295–305. MR 0149479, https://doi.org/10.2307/1970276
- [8] Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- [9] N. Jacobson, Some groups of transformations defined by Jordan algebras. I, J. Reine Angew. Math. 201 (1959), 178–195. MR 0106936, https://doi.org/10.1515/crll.1959.201.178
- [10] Michel A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161–169. MR 0113237
- [11] P. G. Kumpel Jr., On the homotopy groups of the exceptional Lie groups, Trans. Amer. Math. Soc. 120 (1965), 481–498. MR 0192511, https://doi.org/10.1090/S0002-9947-1965-0192511-5
- [12] Jean-Pierre Serre, Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258–294 (French). MR 0059548, https://doi.org/10.2307/1969789
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57.40
Retrieve articles in all journals with MSC: 57.40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1965-0185037-1
Article copyright:
© Copyright 1965
American Mathematical Society