A REMARK ON WIENER'S TAUBERIAN THEOREM

M. KAC

A recent note by Levinson [1] made it seem worthwhile to point out that a weaker version of the Tauberian theorem can be proved in a few lines which is, however, strong enough to provide a proof of the prime number theorem.

Let \(K(x) \in L(-\infty, \infty) \) and assume that its Fourier transform obeys the standard condition

\[
\kappa(\xi) = \int_{-\infty}^{\infty} K(x)e^{ix\xi} \, dx
\]

\[\neq 0 \quad \text{for all} \quad -\infty < \xi < \infty. \]

One version of Wiener's Tauberian theorem is the assertion that if \(m(y) \) is a bounded measurable function such that for almost all \(x \),

\[
\int_{-\infty}^{\infty} K(x - y)m(y) \, dy = 0
\]

then \(m(y) = 0 \) almost everywhere.

The weaker version of the Tauberian theorem is obtained by adding an extra requirement on the function \(K(x) \), namely that

\[
x^2K(x) \in L(-\infty, \infty).
\]

Received by the editors October 10, 1964.
To use this to prove the prime number theorem, we can follow the proof given by Levinson, since here one had

\[K(x) = \begin{cases}
0 & \text{for } x \leq 0 \\
R(e^s)e^{-x} & \text{for } x > 0
\end{cases} \]

where \(R \) is a bounded function; condition (3) is thus satisfied with "plenty to spare."

To prove the weaker version, consider the class \(\Phi \) of functions \(\phi \) which have a continuous second derivative and which vanish outside a bounded interval. Let \(\phi(\xi) \in \Phi \), and set

\[F(x) = \int_{-\infty}^{\infty} \phi(\xi)e^{ix\xi} \, d\xi. \]

Clearly, \(F(x) \in L(-\infty, \infty) \), and \(|F(x)| \cdot |K(x-y)| \cdot |m(y)| \) is integrable as a function of \((x, y)\), where \(K \) and \(m \) obey the hypotheses above. Hence, using (2) and Fubini's theorem, we have

\[0 = \int_{-\infty}^{\infty} F(x) \left(\int_{-\infty}^{\infty} K(x-y)m(y) \, dy \right) \, dx \\
= \int_{-\infty}^{\infty} m(y) \left(\int_{-\infty}^{\infty} K(x-y)F(x) \, dx \right) \, dy \\
\]

and clearly

\[\int_{-\infty}^{\infty} K(x-y)F(x) \, dx = \int_{-\infty}^{\infty} \kappa(\xi)\phi(\xi)e^{ix\xi} \, d\xi. \]

Thus, for each function \(\phi \) in \(\Phi \), we will have

\[0 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} m(y)\kappa(\xi)\phi(\xi)e^{ix\xi} \, d\xi \, dy. \]

The stronger requirement (3) on \(K(x) \) implies that its transform \(\kappa(\xi) \) has a continuous second derivative; since, by assumption (1), \(\kappa(\xi) \) is never zero, we see that multiplication by \(\kappa \) carries the class \(\Phi \) into itself exactly: \(\kappa \Phi = \Phi \). We can rewrite (7) as

\[0 = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \phi(\xi)e^{ix\xi} \, d\xi \right) \, dy \]

for every function \(\phi \) in the class \(\Phi \). Since \(\Phi \) is closed under translation, we can replace \(\phi(\xi) \) by \(\phi(\xi-\alpha) \) and apply the usual change of variable to arrive at
(9) \[0 = \int_{-\infty}^{\infty} m(y) \left(\int_{-\infty}^{\infty} \phi(\xi) e^{it\xi} \, d\xi \right) e^{i\alpha y} \, dy \]

holding now for all real \(\alpha \). Using (4), this may be written as

(10) \[0 = \int_{-\infty}^{\infty} m(y) F(y) e^{i\alpha y} \, dy \]

for all real \(\alpha \). By the uniqueness of Fourier transforms, we may conclude that

(11) \[m(y) F(y) = 0 \]

for almost all \(y \).

Since \(\phi \) has compact support, \(F(y) \) is an entire function, and can be chosen not to be identically zero. Since it can then have at most a denumerable number of zeros, \(m(y) = 0 \) for almost all \(y \), and the proof is complete.

It should perhaps be pointed out that the proof above uses implicitly the concept of a generalized Fourier integral (forced upon us by the fact that \(m(y) \) is merely bounded). Also, the relation \(k\Phi = \Phi \) is somewhat reminiscent of the algebraic nature of the Tauberian theorem.

Reference