CELLULARITY AT THE BOUNDARY OF A MANIFOLD

CHARLES GREATHOUSE

I. Introduction and definitions. A closed subset X of an n-manifold M^n will be said to be cellular at the boundary (CAB) of M^n if there is a sequence $\{B_i^n\}$ of closed n-cells in M^n satisfying: $B_i^n \cap [\text{Bd}(M^n)] = B_i^{n-1}$ a closed $(n-1)$-cell, $B_{i+1}^{n-1} \subset \text{Int}(B_i^{n-1})$, $[B_{i+1}^{n-1} \cap \text{Int}(M^n)] \subset \text{Int}(B_i^n \cap \text{Int}(M^n))$, and $\cap_{i=1}^\infty B_i^n = X$. Thus, the notion of CAB is the analogue, for subsets intersecting the boundary of a manifold, of the concept of cellularity introduced by Brown in [1].

Theorem II.2 shows that CAB sets behave like points on the boundary of a manifold. With the aid of a theorem of McMillan's [2], we give criteria for a compact absolute retract to be CAB of a piecewise-linear n-manifold for $n \neq 4$. A product theorem for CAB sets is given and with some restrictions on dimensions, we show that subarcs of a CAB arc are either CAB or cellular subsets of the interior of the manifold.

We assume a familiarity with [2], [3], and [4]. R^n, S^n denote n-space and the n-sphere. $D^n(j)$ is the closed n-ball in R^n with center at the origin and radius j. $I^n(j) = D^{n-1}(j) \times [0, j]$. The empty set is denoted by \emptyset.

Let A, B be subsets of an n-manifold M^n and let δ be a positive number. Then $\text{Int}(M^n)$, $\text{Bd}(M^n)$ denote the interior and boundary of M^n respectively, $d(A, B)$, the distance from A to B, $\text{Cl}(A)$, the closure of A in M^n, and $V_\delta(A)$, the subset of M^n consisting of points x such that $d(x, A) < \delta$.

Let M^n be an n-manifold with nonempty boundary and let X be a subset of M^n such that $X \cap \text{Bd}(M^n) \neq \emptyset$. Then $2M^n$ denotes an n-manifold with empty boundary obtained by taking two copies M^n_1, M^n_2 of M^n and identifying corresponding boundary points. Similarly, if X_1, X_2 are the copies of X in M^n_1, M^n_2 respectively, then $2X$ is the subset of $2M^n$ consisting of $X_1 \cup X_2$.

II. The pointlike character of CAB sets.

Lemma II.1. If X is CAB of an n-manifold M^n, a sequence $\{(B_i^n)\}$ of closed n-cells may be picked which satisfy (in addition to the necessary

Presented to the Society, November 21, 1964 under the title A criterion for cellularity at the boundary (CAB) of a manifold; received by the editor November 5, 1964.

1 Research supported by grant NSF-GP 211.

1334
conditions for X to be CAB of M^n) the following: $(B^n_{i-1})'$ is a flat closed $(n-1)$-cell in $\text{Bd}[(B^n_i)' \cap \text{Int}(M^n)] \approx R^{n-1} \times [0, 1)$, and $\text{Bd}[(B^n_i)'] \cap \text{Int}[(B^n_i)']$ is bicollared in M^n.

Proof. Let $\{B^n_i\}$ satisfy the necessary conditions for X to be CAB of M^n. We can pick an $(n-1)$-cell F_{i-1}^n satisfying: $B^n_{i-1} \subset \text{Int}(F_{i-1}^n)$ \(\subset F_{i-1}^n \subset \text{Int}(B^n_i)\) and $\text{Bd}(F_{i-1}^n)$ is bicollared in B^n_i. Then there is a homeomorphism h_i of B^n_i onto $I^n(1)$ such that $h_i(F_{i-1}^n) = D^{n-1}(1)$. There is an ϵ_i, $0 < \epsilon_i < \frac{1}{2}$, such that $d[\text{Int}[h_i(B^n_{i+1}) \cup X), \text{Bd}[I^n(1)] - \text{Int}[D^{n-1}(1)]] > \epsilon_i$. Take $(B^n_i)' = h_i^{-1}[I^n(1 - \epsilon_i)]$. Then $\{(B^n_i)\}'$ is the required sequence.

Theorem 11.2. Let X be CAB of an n-manifold M^n and let C^n be a closed n-cell in M^n satisfying $X \subset C^n$, $[\text{Bd}M^n) \subset [\text{Bd}(C^n) \subset \text{Int}[C^n \cap \text{Bd}(M^n)]$. Then there is a map h of M^n onto itself such that $h| C^1(M^n - C^n) = 1$, $h(C^n) = C^n$, $h(X) = p \in \text{Bd}(M^n)$ and $h| M^n - X$ is a homeomorphism of $M^n - X$ onto $M^n - \{p\}$. Thus, $M^n/X \approx M^n$.

Proof. Take a sequence $\{B^n_i\}$ assured by Lemma 11.1. We may assume that $B^n_i \subset C^n$ and $[B^n_i \cap \text{Bd}(C^n)] \subset \text{Int}[C^n \cap \text{Bd}(M^n)]$. In the manner of the proof of Theorem 1 of [1], we inductively pick a sequence $\{h_i\}$ of homeomorphisms of M^n onto itself satisfying: $h_i| C^1(M^n - C^n) = 1$, the diameter of $h_i(B^n_i)$ is less than 1, $h_{i+1}| M^n - B^n_i = h_i| M^n - B^n_i$, and the diameter of $h_{i+1}(B^n_{i+1})$ is less than $1/(i+1)$. Then $h = \lim h_i$ is the required map.

Corollary 11.3. Let $\{X_i : i = 1, \ldots, k\}$ be a finite collection of disjoint subsets of an n-manifold M^n such that each X_i is either cellular in $\text{Int}(M^n)$ or CAB of M^n. Then $M^n/\sim X_i$, where X is the decomposition space obtained by identifying X_i to a point p_i, $i = 1, \ldots, k$.

III. CAB criteria for an absolute retract.

Lemma III.1 ([5, p. 33]). If A is a closed subspace of a metrizable space X and if both A and X are absolute retracts, then A is a strong deformation retract of X.

Lemma III.2 (Borsuk [6]). Every locally contractible compact metrizable space of finite dimension is an absolute neighborhood retract.

Theorem III.3. Let X and Y be finite dimensional (metric) compact absolute retracts and let Y be a closed subset of X. Then X/Y is a compact absolute retract.

Proof. Obviously, X/Y is compact and finite dimensional. By Theorem 2.2 [7, p. 123], X/Y is a metric space. By Lemma III.1, Y is a strong deformation retract of X. Thus, if f is the quotient map.
of X onto X/Y with $f(Y) = y$, X/Y is contractible to the point y. This implies that X/Y is locally contractible and by Lemma III.2, X/Y is an absolute neighborhood retract. Finally, X/Y is a compact absolute retract since it is a compact contractible absolute neighborhood retract.

Theorem III.3 will be applied to situations where X is a compact absolute retract in a manifold M and $Y = X \cap \text{Bd}(M)$ is a compact absolute retract in $\text{Bd}(M)$. Then X/Y is a compact absolute retract in M/Y. If Y is CAB of M, $M/Y \approx M$ and we may assume that Y is a point in $\text{Bd}(M)$ to simplify arguments. In this case, $2X$ will be a compact absolute retract in $2M$.

Lemma III.4. Let M^{n-1} be an $(n-1)$-manifold topologically embedded in the interior of an n-manifold M^n, $n > 3$. Let B^{n-1} be a closed $(n-1)$-cell in M^{n-1}, $p \in \text{Int}(B^{n-1})$, and let B^{n-1} be locally flat in M^n except at p. Then B^{n-1} is also locally flat at p provided it has a one-sided local collar at p.

Proof. Let B^n be a closed n-cell in M^n such that $p \in \text{Int}(B^n)$. B^{n-1} has a one-sided local collar at p, thus, there is a homeomorphism $h: I^n(1) \to \text{Int}(B^n)$ such that $p = h(0)$, $h[D^n(1)] \subset \text{Int}(B^{n-1})$, and $h[I^n(1) - D^n(1)] \cap M^{n-1} = \emptyset$. Let $S^{n-1}(\frac{1}{2}) = h[Bd(I^n(\frac{1}{2}))]$. Then $S^{n-1}(\frac{1}{2})$ is locally flat in $\text{Int}(B^n) \approx R^n$ except at p. Hence, by the corollary in [8], $S^{n-1}(\frac{1}{2})$ is flat in $\text{Int}(B^n)$. This implies that B^{n-1} is locally flat at p.

Lemma III.5. Let X be a compact subset of an n-manifold M^n, $n > 3$. Then X is CAB of $M^n \equiv X \cap \text{Bd}(M^n) = Y$ is a cellular subset of $\text{Bd}(M^n)$ and X is cellular in $2M^n$.

Proof. The necessity follows from the definition of CAB and the fact that $\text{Bd}(M^n)$ is bicollared in $2M^n$. Thus, suppose Y is a cellular subset of $\text{Bd}(M^n)$ and X is cellular in $2M^n$. We consider $X = X_1$, a subset of M^n_1, where $2M^n = M^n_1 \cup M^n_2$ joined along their boundaries. Let f be the quotient map of $2M^n$ onto $2M^n/X$ and let $f(X) = p$. Cellular subsets of the boundary of a manifold are trivially CAB of the manifold since the boundary is collared in the manifold. Therefore, Y is CAB of M^n_1 and by Theorem II.2, $f(M^n_2) \approx M^n_2$. Thus, $f[\text{Bd}(M^n_1)]$ is collared in $f(M^n_2)$ and by Lemma III.4, $f[\text{Bd}(M^n_1)]$ is locally flat in $f(2M^n)$ at $f(X) = p$. Hence, we pick a sequence $\{B^n_1\}$ of closed n-cells in $f(M^n_1)$ satisfying the conditions necessary for p to be CAB of $f(M^n_1)$ and such that $f^{-1}(B^n_1)$ lies in the interior of some closed n-cell in $2M^n$ containing X. Then $\{f^{-1}(B^n_1)\}$ is a sequence of closed n-cells in M^n_1 satisfying the conditions necessary for X to be CAB of M^n_1.
Theorem III.6. Let X be a compact subset of a piecewise-linear n-manifold M^n, $n > 5$, such that X and $X \cap \partial(M^n) = Y$ are absolute retracts. Then X is CAB of M^n if for each open set U of M^n containing X, there is an open set V of M^n such that $X \subset V \subset U$ and: (1) each loop in $V - X$ is homotopic in $U - X$ to a loop in $\partial(M^n)$ and (2) each loop in $(V - X) \cap \partial(M^n)$ is nullhomotopic in $(U - X) \cap \partial(M^n)$.

Proof. The necessity is obvious in view of Lemma III.1. Thus, we show the sufficiency. We will do this by showing that Y is cellular in $\partial(M^n)$, X is cellular in $2M^n$, and applying Lemma III.5. We consider $X = X_1$ a subset of M^n_1, where $2M^n = M^n_1 \cup M^n_2$ joined along their boundaries. Condition (2) together with Theorem 1 of [2] imply that Y is cellular in $\partial(M^n_1)$ and hence simultaneously CAB of M^n_1 and M^n_2. Theorem III.3 shows that X / Y is a compact absolute retract. Thus, we may assume that $Y = y$ is a point in $\partial(M^n)$.

Let U be an open set in $2M^n$ containing X. We may assume that $U \cap \partial(M^n_1) = U \cap \partial(M^n_2)$ is an open $(n - 1)$-cell since $Y = y$ is a point. Let $U_1 = U \cap M^n_1$. Then U_1 is an open set in M^n_1 containing X. By hypothesis, there is a set V_1 open in M^n_1 such that $X \subset V_1 \subset U_1$ and each loop in $V_1 - X$ is homotopic in $U_1 - X$ to a loop in $\partial(M^n_1)$. We may also assume that $V_1 \cap \partial(M^n_1)$ is an open $(n - 1)$-cell whose closure B^{n-1}_1 is a closed $(n - 1)$-cell contained in $U_1 \cap \partial(M^n_1)$. There is a positive number ϵ and a homeomorphism $h : B^{n-1} \times [0, \epsilon) \to U \cap \partial(M^n_1)$ such that $h|B^{n-1} \times \{0\}$ is the inclusion map and $h[B^{n-1} \times (0, \epsilon)] \subset \text{Int}(M^n_1)$. Let $V = V_1 \cup h[\text{Int}(B^{n-1}) \times [0, \epsilon)]$. We will show that any loop in $V - X$ is nullhomotopic in $U - X$.

Let $f : S^1 \to V - X$. We assume that f is simplicial and $f(S^1)$ is in general position with respect to $\partial(M^n_1)$. If $f(S^1) \cap M^n_1 = \emptyset$, the result follows trivially. Thus, suppose $f(S^1) \cap M^n_1 \neq \emptyset$. Then $f(S^1) \cap M^n_1$ consists of a finite number of paths in $V_1 - X$ with endpoints in $\partial(M^n_1)$. Let α_i be one such path with endpoints p_i, ϕ_i. Then p_i, ϕ_i can be joined by an arc β_i in $(V_1 - X) \cap \partial(M^n_1)$. If $l_i = \alpha_i \cup \beta_i$, by hypothesis, l_i is homotopic in $U_1 - X$ to a loop in $\partial(M^n_1)$ and hence is nullhomotopic in $U_1 - X$ since $U_1 \cap \partial(M^n_1)$ is an open $(n - 1)$-cell. This implies that α_i is homotopic in $U_1 - X$ to β_i with p_i, ϕ_i fixed throughout the homotopy. Since $V \cap M^n_2 = h[\text{Int}(B^{n-1}) \times [0, \epsilon)]$, $f(S^1) \cap M^n_2$ is homotopic in $V \cap M^n_2$ to a subset of $\text{Int}(B^{n-1}) - y$ with the homotopy fixed throughout on $\text{Int}(B^{n-1})$. Thus, $f(S^1)$ is homotopic in $U - X$ to a loop in $(U - X) \cap \partial(M^n_1)$ and hence is nullhomotopic in $U - X$. Theorem 1 of [2] implies that X is cellular in $2M^n$ and Lemma III.5 shows that X is CAB of M^n.

Remark. Theorem III.6 holds for $n = 5$ if we replace condition (2) by condition (2') requiring Y to be a cellular subset of $\partial(M^n)$.
Lemma III.7. Let X be a closed subset of $I^n(1)$. Then X is CAB of $I^n(1)$ if and only if $X \subset \partial [I^n(1)] = Y$ is a cellular subset of $\partial [I^n(1)]$ and $2X$ is cellular in $2I^n(1) \approx S^n$.

Proof. The necessity is obvious. Thus, we show the sufficiency. As usual, $2I^n(1) = I^n_1(1) \cup I^n_2(1)$ joined along their boundaries. We may assume that $Y = \gamma$ is a point of $\partial [I^n_1(1)]$ since Y is CAB of $I^n_1(1)$. Let $f : 2I^n(1) \to 2I^n(1)/2X \approx S^n$ be the quotient map with $f(2X) = f(\gamma) = \gamma$. Now $f[\partial [I^n_1(1)]]$ is locally flat in $f[2I^n(1)]$ except possibly at γ. If $n \neq 3$, $f[\partial [I^n_1(1)]]$ is flat. If $n = 3$, either $f[I^n_1(1)]$ or $f[I^n_2(1)]$ is a closed 3-cell [9]. In either case, we may assume without loss of generality that $f[I^n_1(1)]$ is a closed n-cell. The completion of the proof follows as in the proof of Lemma III.5.

Theorem III.8. Let X be a compact subset of a piecewise-linear 3-manifold M^3 such that X and $X \subset \partial (M^3)$ are absolute retracts and such that for some open set 0 of M^3 containing X, the pair $(0, 0 \cap \partial (M^3))$ is embeddable in $(I^3(1), \partial [I^3(1)])$. Then X is CAB of M^3 if for each open set U of M^3 containing X, there is an open set V of M^3 with $X \subset V \subset U$ and each loop in $V - X$ is nullhomotopic in $U - X$.

Proof. The hypothesis on 0 allows us to assume that $M^3 = I^3(1)$. Y is cellular in $\partial [I^3(1)]$ since it is a compact absolute retract in the interior of a 2-manifold. Hence, we assume that $Y = \gamma$ is a point of $\partial [I^3(1)]$.

Let U be an open set of $2I^3(1) = I^3_1(1) \cup I^3_2(1) \approx S^3$ containing $2X = X_1 \cup X_2$. We may assume that U is symmetric with respect to $I^3_1(1)$ and $I^3_2(1)$, and that $U \cap \partial [I^3_1(1)]$ is an open 2-cell. Then by hypothesis and a little care, we obtain an open set V of $2I^3(1)$ such that V is symmetric with respect to $I^3_1(1)$ and $I^3_2(1)$, $V \cap \partial [I^3_1(1)]$ is an open 2-cell, $X_i \subset V_i := [V \cap I^3_i(1)] \subset U_i := [U \cap I^3_i(1)]$, and each loop in $V_i - X_i$ is nullhomotopic in $U_i - X_i$.

Let $f : S^1 \to V - 2X$. We suppose that f is simplicial and that $f(S^1)$ is in general position with respect to $\partial [I^3_1(1)]$. Then $f(S^1) \cap I^3_1(1)$ is a finite collection of paths in $V_i - X$ with endpoints in $\partial [I^3_i(1)]$. As in the proof of Theorem III.6 we join these endpoints with arcs in $(V_i - X) \cap \partial [I^3_i(1)]$ and obtain a homotopy pulling $f(S^1)$ into $(U - X) \cap \partial [I^3_i(1)]$. Since $(U - X) \cap \partial [I^3_1(1)]$ and $(V - X) \cap \partial [I^3_1(1)]$ are open 2-cells, there is another homotopy pulling $f(S^1)$ into $(V_i - X) \cap \partial [I^3_i(1)] = (V_i - X) \cap \partial [I^3_i(1)]$ and then, by hypothesis, it is nullhomotopic in $U_i - X$. Thus, by Theorem 1' of [2], $2X$ is cellular in $2I^3(1)$, and by Lemma III.7, X is CAB of $I^3(1) = M^3(1)$.
Lemma III.9. Let X be a compact subset of a piecewise-linear 3-manifold M^3. Then X is CAB of $M^3 \Rightarrow X \cap \text{Bd}(M^3) = Y$ is cellular in $\text{Bd}(M^3)$ and $2X$ is cellular in $2M^3$.

Proof. As usual, the necessity is obvious. Thus, we show the sufficiency. Let U be an open set of M^3 containing X. Then $2U = U_1 \cup U_2$ is an open set of $2M^3 = M_1^3 \cup M_2^3$ containing $2X = X_1 \cup X_2$. By hypothesis, there is a closed 3-cell B^3 such that $2X \subset \text{Int}(B^3) \subset B^3 \subset U$. By Theorem 3 of [2], we may assume that B^3 is a piecewise-linear 3-cell. We also suppose that $\text{Bd}(B^3)$ is in general position with respect to $\text{Bd}(M^3)$. Then $\text{Bd}(B^3) \cap \text{Bd}(M^3)$ consists of a finite number of simple closed curves. We may assume that B^3 has been cut down, by removing inessential simple closed curves on $\text{Bd}(B^3)$, to a submanifold N^3 such that $2X \subset \text{Int}(N^3)$, $N^3 \cap M^3 = N_i$ is a cube with handles, and $N^3 \cap \text{Bd}(M^3) = D$ is a disk with holes. If D is a disk, we are through. If D is a disk with n holes, we may "cut one of the handles" of either N_1 or N_2 to reduce D to a disk with $(n - 1)$ holes. By induction, we obtain a closed 3-cell $(B^3)'$ either in U_1 or U_2 of the required type to show that either X_i is CAB of M^3 or X_2 is CAB of M^3.

Theorem III.10. Let X be a compact 1-dimensional subset of a piecewise-linear 3-manifold M^3 such that X and $X \cap \text{Bd}(M^3) = Y$ are absolute retracts. Then X is CAB of $M^3 \iff$ for each open set U of M^3 containing X, there is an open set V of M^3 such that $X \subset V \subset U$ and each loop in $V - X$ is nullhomotopic in $U - X$.

Proof. $2X$ is a compact absolute retract in $2M^3$. D. R. McMillan pointed out to the author that some neighborhood of $2X$ is embeddable in R^4 since $2X$ is 1-dimensional. A proof similar to that of Theorem III.8 shows that $2X$ is cellular in $2M^3$. Again, Y is cellular in $\text{Bd}(M^3)$ and thus Lemma III.9 implies that X is CAB of M^3.

Theorem III.11. Let X be a compact subset of an i-manifold M^i, $i = 1, 2$, such that X and $X \cap \text{Bd}(M^i) = Y$ are absolute retracts. Then X is CAB of M^i and hence $M^i/X \approx M^i$.

Proof. The case $i = 1$ is trivial. If $i = 2$, Y is cellular in $\text{Bd}(M^2)$, $2X$ is cellular in $2M^2$ and an easy argument completes the proof.

IV. CAB sets in products.

Lemma IV.1. Let N^n, M^m be n, m manifolds respectively such that $\text{Bd}(N^n) \neq \emptyset$ and $\text{Bd}(M^m) = \emptyset$. Then $2(N^n \times M^m) \approx (2N^n) \times M^m$.

Proof. $2(N^n \times M^m)$ consists of two copies of $N^n \times M^m$ joined along
\[\text{Bd} (N^n \times M^m) = [B(N^n) \times M^m] \cup [N^n \times \text{Bd}(M^m)] \], while \((2N^n) \times M^m\) consists of two copies of \(N^n \times M^m\) joined along \(\text{Bd}(N^n) \times M^m\).

Theorem IV.2. Let \(N^n, M^m\) be piecewise-linear \(n, m\) manifolds respectively such that \(\text{Bd}(N^n) \neq \emptyset\), \(\text{Bd}(M^m) = \emptyset\), and \(n \geq 2, m \geq 1\). Let \(X\) be a compact subset of \(N^n, Z\) a compact subset of \(M^m\), and suppose \(X, [X \cap \text{Bd}(N^n)] = Y,\) and \(Z\) are absolute retracts. If \(m + n \geq 6\), then \(X \times Z\) is CAB of \(N^n \times M^m\).

Proof. Theorem 8 of [2] implies that \(Y \times Z\) is cellular in \(\text{Bd}(N^n) \times M^m\). It also implies that \(X \times Z\) is cellular in \((2N^n) \times M^m\). Then Lemma IV.1 implies that \(X \times Z\) is cellular in \(2(N^n \times M^m)\). Hence by Lemma III.5, \(X \times Z\) is CAB of \(N^n \times M^m\).

A couple of applications of the corollary to Theorem 8 in [2] together with Lemma III.7 give the following theorem.

Theorem IV.3. Let \(X\) be a compact subset of \(D^n(1)\), such that \(X\) and \(X \cap \text{Bd}[D^n(1)]\) are absolute retracts. Then \(X \times X\) is CAB of \(D^n(1) \times [−1, 1]\).

V. CAB arcs. Let \(α\) be the arc described in Example 1.3 of [10]. We suppose that \(α \subset I^1(1)\) and \(α \cap \text{Bd}[I^1(1)] = \{ p \}\), where \(p\) is the "good" endpoint of \(α\). Then \(α\) is the monotone union of subarcs each of which is cellular in \(\text{Int}[I^1(1)]\) and each of which contains the "bad" endpoint of \(α\), but \(α\) is not CAB of \(I^1(1)\) since \(2α\) is not cellular in \(2I^1(1)\).

However, going in the other direction we have the following theorem.

Theorem V.1. Let \(α\) be an arc CAB of an \(n\)-manifold \(M^n\) and let \(β\) be a subarc of \(α\). Then the following hold:

1. \(β \subset \text{Bd}(M^n), n \neq 5 \Rightarrow \text{β is cellular in } \text{Bd}(M^n)\) and hence CAB of \(M^n\),
2. \(β \cap \text{Bd}(M^n)\) is a point (\(\emptyset\)), \(n \neq 4 \Rightarrow \text{β is CAB of } M^n\) (cellular in \(\text{Int}(M^n)\)),
3. \(β \cap \text{Bd}(M^n)\) is a proper subarc of \(β, n \neq 4, 5 \Rightarrow \text{β is CAB of } M^n\).

Proof. Since \(α\) is CAB of \(M^n\), we may assume that \(M^n = I^n(1)\). By Lemma III.7, \(α \cap \text{Bd}[I^n(1)] = σ\) is cellular in \(\text{Bd}[I^n(1)] \approx S^{n−1}\) and \(2α\) is cellular in \(2I^n(1) \approx S^n\). Also \(σ\) is CAB of \(I^n(1), \sigma\) is cellular in \(2I^n(1)\), and hence \(2(α/σ)\) is cellular in \(2(I^n(1)/σ) \approx 2I^n(1) \approx S^n\). Theorem 6 of [2] together with Lemma III.7 give (1) and (2) immediately and (3) follows with an additional easy argument.
References

The University of Tennessee and Vanderbilt University