A REMARK ON THE EXISTENCE OF A G-STRUCTURE

EDWARD T. KOBAYASHI

The purpose of this note is to show that a O-deformable tensor field \([4]\) defines a G-structure, i.e., a subbundle of the frame bundle.\(^{2}\)

We shall prove this statement in a slightly more general form. I am indebted to Professor K. Nomizu for calling my attention to this problem [Math. Reviews 27 (1964) #678], and to Professor T. Tamagawa for the valuable suggestion he made for the proof.

In [3, p. 294, Theorem], Crittenden shows that a cross section \(X\) of an associated bundle \((W, G, F, M, \pi)\) of a principal bundle \((P, G, M, \pi)\) is parallelizable if and only if \(f_X(P) = \beta_0 f\), where \(\beta_0 f\) is an orbit by the action \(\beta: G \times F \rightarrow F\), through some fixed \(f \in F\). Here \(f_X: P \rightarrow F\) is the differentiable map defined by \(f_X(p) = F(p)\left(X(\pi(p))\right)\) for \(p \in P\), where \(F(p): F \rightarrow F(\pi(p))\) is the map induced from \(P \times F\) to \(W\).

He further asserts that if \(X\) is parallelizable, \(B = f_X^{-1}(f)\) is a bundle with group \(K = \{g \in G | \beta_0 f = f\}\). In the proof of this assertion, the key idea is that \(f_X': P \rightarrow G/K\) determines a cross section in the associated bundle with fibre \(G/K\), where \(f_X'\) is defined by \(f_X' = \iota \circ f_X\), \(\iota\) being the map \(G/K \rightarrow \beta_0 f \subset F\) induced from \(g \rightarrow \beta_0 f\). However this \(f_X'\) is not necessarily differentiable.

This is precisely the point that Bernard worries about in the more special setting, where \(W\) is a tensor bundle (thus \(F\) is a vector space and \(G\) is the general linear group \(GL(n, \mathbb{R})\)), in [1, p. 211, Proposition III.2]. For \(f_X'\) to be differentiable, it suffices that \(f_X'\) be continuous, and for the latter it suffices that \((\iota, G/K)\) be a regular submanifold of \(F\).

Let us recall that "if \(G\) is a locally compact topological group which is a countable union of compact sets, \(S\) is a locally compact space, and if \(G\) acts on \(S\) as a transitive group of transformations then \(G/H_\pi\) is homeomorphic to \(S\), where \(H_\pi\) is the isotropy subgroup of \(G\) at a point \(p\) of \(S\)." The proof of this can be obtained from the proof in Pontrjagin [5, Theorem 12].

This shows, that, in order that \((\iota, G/K)\) be a regular submanifold of \(F\), it suffices that \(\beta_0 f\) be locally compact. In the rest we shall show the following lemma:

Received by the editors October 3, 1964.

1 This research was supported in part by National Science Foundation Grant G24154.

2 This has been proved by Y. C. Wong [7, pp. 73–75]. We present a different proof.
Lemma. If \(F \) is the real vector space \(\mathbb{R}^n \), and \(G \) a real algebraic group contained in \(GL(n, \mathbb{R}) \), then \(\beta \) of is locally compact.

Corollary. Under the condition of the lemma, if \(X \) is parallelizable then \(B = f^1(\mathbb{R}) \) is a subbundle with group \(K \) of the principal bundle \(P \).

Proof of Lemma. By a real algebraic group \(G \) contained in \(GL(n, \mathbb{R}) \) we mean a group consisting of all invertible real \(n \times n \) matrices whose coefficients annihilate some set of polynomials with real coefficients in \(n^2 \) indeterminates. \(G \) is acting on \(\mathbb{R}^n \).

Let \(x_0 \in \mathbb{R}^n \) be fixed and consider the orbit \(G \cdot x_0 \). If \(G \) is irreducible (as an algebraic set) then \(G \cdot x_0 \) is also irreducible. If \(G \) is not irreducible, let the finite number of irreducible components of \(G \) be denoted by \(G_i \). If \(G_i \cdot x_0 \cap G_j \cdot x_0 \neq \emptyset \), then \(G_i \cdot x_0 = G_j \cdot x_0 \). Hence, in order to prove that \(G \cdot x_0 \) is locally compact (in the induced topology from the ordinary euclidean topology on \(\mathbb{R}^n \)), it suffices to assume \(G \) to be irreducible.

Now assuming \(G \) to be irreducible, let \(V \) be the smallest algebraic set in \(\mathbb{R}^n \) containing \(G \cdot x_0 \). \(V \) is irreducible. From [2, p. 191, Lemma 2, and p. 180, Proposition 13], we see that all the points of \(G \cdot x_0 \) are simple points of \(V \). By Whitney [6], we know that \(V = M_1 \cup V_1 \), where \(V_1 = V - M_1 \), \(V_1 \) is void or a proper algebraic set in \(V \), and \(M_1 \) is a manifold consisting of all simple points of \(V \).

Hence \(G \cdot x_0 \subset M_1 \). \(G \cdot x_0 \) is an open submanifold of \(M_1 \) (where we are considering the topology on \(M_1 \) induced from the ordinary euclidean topology of \(\mathbb{R}^n \)). Hence as \(G \cdot x_0 \) is an open set of \(M_1 \), which in turn is an open set of \(V \), which in turn is a closed set of \(\mathbb{R}^n \) with the euclidean topology, we conclude that \(G \cdot x_0 \) is locally compact. Q.E.D.

References

* The idea of this proof was taken from the proof of Borel and Harish-Chandra, *Arithmetic subgroups of algebraic groups*, Ann. of Math. (2) 75 (1962), 485–535, p. 495, Proposition 2.3.
A NOTE ON A REDUCIBLE CONTINUUM

E. L. BETHEL

In [4], Knaster shows that there exists an irreducible compact metric continuum M which has a monotone continuous decomposition G such that each element of G is nondegenerate and M/G is an arc. Also, he raised the question as to whether there existed an irreducible continuum M which has a monotone continuous decomposition G such that each element of G is an arc and M/G is an arc. E. E. Moise settled this question in the negative in [5]. In [3], M. E. Hamstrom showed that if G is a monotone continuous decomposition of a compact metric continuum such that each element of G is a non-degenerate continuous curve and M/G is an arc, then it is not the case that M is irreducible. E. Dyer generalized this result by showing in [2] that if M is a compact metric continuum and G is a monotone continuous decomposition of M such that each element of G is non-degenerate and decomposable, then it is not the case that M is irreducible. A purpose of this note is to extend Dyer's result somewhat.

The author is indebted to the referee for some suggestions which have been incorporated in this note. In particular, a weakened hypothesis in Theorem 2.

Theorem 1. Let M denote a compact metric continuum and G a nondegenerate monotone continuous decomposition of M each of whose elements is nondegenerate. If H is a subcollection of G each of whose elements is snakelike and indecomposable, and if H^* is dense in M, then uncountably many elements of G are indecomposable.

Proof. Let I_1 denote an element of H, and let C_1 denote the first chain in a sequence of defining chains for I_1, and let L_1 and L_2 denote the end links of C_1. Since H^* is dense in M, and G is a continuous collection, C_1 contains two elements $I(10)$ and $I(11)$ of H such that $I(10)$ and $I(11)$ intersects every link of C_1. Let $\{C_n(10)\}$ and $\{C_n(11)\}$ denote chain sequences which define $I(10)$ and $I(11)$ respectively.

Presented to the Society, November 13, 1965 under the title On reducibility of continua; received by the editors January 11, 1965.