BLOCK IDEMPOTENTS OF TWISTED GROUP ALGEBRAS

W. F. REYNOLDS

In [4] Conlon has successfully generalized much of the theory of modular representations to the projective case. However his generalization [4, p. 166] of one of Brauer's main theorems on blocks [3, 10B], [5] is not entirely satisfactory. In Theorem 1 we present another generalization which is closer than Conlon's to the original Brauer theorem, and in Theorem 2 we indicate an application involving the number of blocks with a given defect group.

Let G be a finite group and Ω a field of prime characteristic p. A twisted group algebra $\Gamma(G)$ of G over Ω is an associative Ω-algebra with a basis consisting of elements (g) in one-to-one correspondence with the elements g of G, with multiplication determined by equations

$$ (g)(h) = \epsilon_{\theta,h}(gh), \quad g, h \in G, $$

where $0 \neq \epsilon_{\theta,h} \in \Omega$. By associativity, $\epsilon = \{\epsilon_{\theta,h}\}$ must be a factor set of G in Ω. It is well known that the projective representations of G in Ω with factor set ϵ can be identified with the representations of $\Gamma(G)$ [6].

For any $g \in G$, define

$$ C^*(g) = \{x \in G : (x)^{-1}(g)(x) = (g)\}. $$

It is evident that $C^*(g)$ is a subgroup of the centralizer $C(g)$ of g in G. Let us call $g \epsilon$-regular provided that $C^*(g) = C(g)$. A short calculation shows that

$$ C^*(h^{-1}gh) = h^{-1}C^*(g)h, \quad g, h \in G; $$

hence the set of all ϵ-regular elements is a union of conjugate classes of G, which we call the ϵ-regular classes of G.

We assume\(^2\) that $\Gamma(G)$ satisfies the following conditions:

\begin{align*}
(2) \quad (h)^{-1}(g)(h) &= (h^{-1}gh), \quad g, h \in G, \ g \ \epsilon\text{-regular}; \\
(3) \quad (g^{-1}) &= (g)^{-1}, \quad g \in G.
\end{align*}

(Condition (2) is never an essential restriction; and neither is (3) if Ω is algebraically closed [4, §1].)

Received by the editors February 15, 1965.

\(^1\) This work has been supported in part by the National Science Foundation, through Harvard University, under Grant NSF-G-23833.

\(^2\) In fact we do not need to assume (3), since it is not required in the proof of Conlon's theorem.
For each \(\epsilon \)-regular class \(K \), let \((K) = \sum_{g \in K} (g) \); these \(\epsilon \)-regular class sums \((K) \) form a basis of the center \(\Lambda(G) \) of \(T(G) \). As usual, we call any \(p \)-Sylow subgroup of \(C(g) \) for any \(g \in K \) a defect group of \(K \). For any block idempotent, i.e. primitive idempotent, \(e \) of \(\Lambda(G) \), write
\[
e = \sum_{K} f_{K}(K), f_{K} \in \Omega.\]
Then the largest of the defect groups of the \(K \) for which \(f_{K} \neq 0 \) can be called a defect group of \(e \); this is uniquely determined up to conjugacy in \(G \) [4, §3].

Let \(D \) be an arbitrary \(p \)-subgroup of \(G \). Let \(C(D) \) be the centralizer of \(D \) in \(G \), and denote the normalizer \(N(D) \) of \(D \) in \(G \) by \(\mathcal{N} \). For each \(\epsilon \)-regular class \(K \), set
\[
s((K)) = \sum_{g \in K \cap C(D)} (g).\]
By [4, §3], extending \(s \) by linearity gives an \(\Omega \)-algebra homomorphism \(s: \Lambda(G) \rightarrow \Lambda(H) \), where \(\Lambda(H) \) is the center of the twisted group algebra \(T(H) \) of \(H \) whose factor set is the restriction \(\epsilon | H \) of \(\epsilon \) to \(H \). Adapting our terminology to \(H \) in the obvious way, we can now state:

Theorem 1. The homomorphism \(s \) determines a one-to-one correspondence \(e \leftrightarrow s(e) \) between the block idempotents of \(\Lambda(G) \) which have \(D \) as one of their defect groups and the block idempotents of \(\Lambda(H) \) which have \(D \) as their unique defect group.

We shall show that Theorem 1 follows from Conlon’s theorem. The letter states that \(e \leftrightarrow s(e) \) is a one-to-one correspondence between the block idempotents of \(\Lambda(G) \) which have \(D \) as one of their defect groups and the primitive idempotents of \(U(D) \), where \(U(D) \) is a subalgebra of \(\Lambda(H) \) which has as a basis those \((\epsilon | H) \)-regular class sums \((L) \) of \(H \) such that \(L \) has defect group \(D \) and consists of \(\epsilon \)-regular elements. (Since only \(\epsilon \)-regular elements are involved, these class sums are defined in \(\Lambda(H) \), even though the analogue of (2) for \(\epsilon | H \) need not hold.) Furthermore each primitive idempotent of \(U(D) \) is a sum of block idempotents of \(\Lambda(H) \) which have defect group \(D \).

As Conlon points out, the complication in his theorem is due to the fact that an \((\epsilon | H) \)-regular element need not be \(\epsilon \)-regular. However, we can prove:

Lemma. Every \((\epsilon | H) \)-regular element whose conjugate class in \(H \) has defect group \(D \) is \(\epsilon \)-regular.

This lemma implies that the \((\epsilon | H) \)-regular class sums \((L) \) of \(H \) such that \(L \) has defect group \(D \) form a basis of \(U(D) \), and hence that \(U(D) \) contains all block idempotents of \(\Lambda(H) \) with defect group \(D \). Therefore these idempotents of \(\Lambda(H) \) are precisely all the primitive
idempotents of $U(H)$. This proves that Theorem 1 follows from Conlon's theorem.

It remains to prove the lemma. Let $h \in H$ satisfy the hypothesis of the lemma. Since h is $(e\mid H)$-regular, $C(h) \cap H \subseteq C'(h)$. Since D is the unique defect group of the class of h in H, D is a p-Sylow subgroup of $C(h) \cap H$. Then the second paragraph of the proof of [5, Lemma 3.4] shows that D is a p-Sylow subgroup of $C(h)$, and hence also of $C'(h)$. For any $x \in C(h)$, $x^{-1}Dx$ is a p-Sylow subgroup of $x^{-1}C'(h)x$, which equals $C'(h)$ by (1). Then $x^{-1}Dx = y^{-1}Dy$ for some $y \in C'(h)$, and $xy^{-1} \in N(D) \cap C(x) = H \cap C(x) \subseteq C'(h)$. Hence $x \in C'(h)$, so that h is e-regular as required.

Theorem 1 can be applied in conjunction with the methods of Bovdi [1] to generalize [1, Theorems 1 and 2] as follows (cf. [2, Corollary 1]).

Theorem 2. The number of block idempotents of $\Lambda(G)$ with D as a defect group is less than or equal to the number of p-regular e-regular classes K of G with D as a defect group such that (K) is not a nilpotent element of $\Lambda(G)$.

Equality holds here if G has a normal subgroup T of p-power index such that T has a normal p-Sylow subgroup, while Ω is algebraically closed.

In a later paper we shall give a proof of a more general form of Theorem 2.

I wish to thank Dr. Conlon for some helpful correspondence.

References

1. A. A. Bovdi, The number of blocks of characters of a finite group with a given defect, Ukrain. Mat. Ž. 13 (1961), 136–141. (Russian)

Tufts University