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A VOLTERRA EQUATION WITH A VERY
SINGULAR KERNEL1

E. L. ROETMAN

For continuous, or mildly singular kernels, the Volterra equations

of second kind can be solved with a Neumann series which converges

for the entire complex X plane. The purpose of the present note is to

show, by studying a special case, what can happen if the kernel is

very singular. In particular, we find that the equation can have

finite spectral values, in fact the circle | X| = 1 can be a natural bound-

ary for the resolvent kernel, and that it is not easy to describe a

"natural" domain and range for the operator in terms of the usual

classes of functions.

Consider the Volterra type integral equation for complex valued

functions of a real variable given by

(1) <b = a + Xk * <b,

where

(2) kit) = 0/7r1/2)r3'2 expOV/4 + i/t)

and * denotes the convolution,

f*g=   f fit - s)gis) ds.
J 9

(The study of the boundary value problem for the equation of vibra-

tion of elastic bars leads to the related equation
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1 Based in part on the author's thesis, written under the guidance of Professor
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<p = a -\- \k* $

which is solved in [l ] and which does not exhibit the pathologies dis-

cussed here.)

By formal substitution we obtain the Neumann series

(3) <j> = a + Xk * a + X2k * (k * a) + ■ ■ ■ .

It has been proved in [l, Appendix I] that the integral k * a exists

for Ogt^T if a is CBV[0, T],2 that for this class of functions

k * (k * a) = (k * k) * a = k, * a,

and that

k2(t) = (2i/Trll2)l-il2 exp(iV/4 + 4J/0-

Since k,(t) has the same order singularity as k(t), the above re-

sults assure that k2 * a exists and

k * (k * (k * a)) = (k * k,) * a = k3 * a.

ki can also be evaluated as above; in fact, by [l, Appendix I], (3) can

be written
00

(4) <t> = a + £ Xn£» * a
n-l

where

(5) k„(t) = (ni/ir1'2^-3'2 exp(t7r/4 + in2/t).

We prove

Theorem 1. If a(t) is CBV[0, T] and |x| <1, then (4) defines a

continuous solution of (1).

By integration by parts

|   kn(t-s)a(s) ^=«exp(tV/4)ir1'2 < (i/n2) exp(i»2/0'l/2a(0)

(6) °

+ (i/n2) f^exp(mV0-5))[-l/2(/-5)-1'2a(5) dj+(/-*)"*da(s)]\ .

Thus with A =max[0,T] a(t)

\kn*a\  g(l/(n^'2))

■ iAT1'* + A  f —(i- s)-l<2 ds+  f (t- s)1'* dV(a; 0, s)\ ,

' CBV [0, T] means that class of functions which are continuous and of bounded

variation on [0, T\.
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where Via; 0, s) is the total variation of a from 0 to 5. Hence

| kn * a |   ^ (l/n)(2A + V{a\ 0, T))iT/iry'2 = B/n

where B is independent of t and ra. Therefore

oo oo

2~Z Mn *a   ^ B 2Z I a |"/»
n=l »—1

so that (4) converges uniformly and absolutely on [0, T].

We must yet show that <b defined by (4) is continuous and that

(1) is satisfied. Suppose h>0; we have

/. t+h
s~3'2 exp(in*/s)a(t + h — s) ds

o

—   I    s~3/2 exp(ini/s)a(t — s) ds
J o

=   f s-*'2 expiin2/s) [ait + k - s) - a(t - s)} ds
J o

n t+h

+  I      s_3/2 exp(in2/s)a(t + h — s) ds.

By a mean value theorem for BV functions [2, p. 623],

\D\  g{\a(t + h)-a(t)\   +V(a(s);t,t + h) + V(a(s);0,h)]M1

+ {|a(*)|  +Viais);0,k)}M2

where

I  C '2
Mi =      sup I     s~112 expO'ra2/^) ds

osii<itsr I >7 j,

and

M2 =      sup 5~3/2 exp(ira2/.r) ds  .
<g«i<«i^'+» I J <j

Now, o and Via) are continuous on [0, T] and, since the integral

exists, M1 = o(l). Thus |l?|—>0 as A—»0. For &<0, we have the cor-

responding result so that each term in (4) is continuous. This implies,

with the uniform convergence, that <p is continuous.

Also,
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Xk* <j> = Xk* a + Xk* (^2 X" kn * a)

= 22 X"£» * a = — a + <b

so that (4) is a solution of (1).

Using (6), it is not difficult to show that, for |x| <1, (4) can be

written

(7) <p = a +  I    P(X; t - s)a(s) ds,
Jo

where

OS

P(X;0 = (I/tt1'2)^'4/-3'2 22 »X" exp(i»2/0.
»=i

By [3, Theorem 8, p. 424], the circle [X| = 1 is a natural boundary of

P(x, 0-
To further illustrate the behavior of this equation, we give an

elementary proof that X = l is a spectral value of the equation. We

assume that X = 1 and a = 1 so that (4) gives

(8) (HO = 1 + E f kn(s) ds.
n=l J 0

We let u = s~1 and integrate by parts twice to obtain

I   kn(s) ds = Ctlllrrl exp(in2/t) + 0(n~l)
Jo

uniformly in n. Set t = l/2irm where m is any positive integer. Then

f \n(s) ds = C - + 0(n-'),
J o (2irm)1'2   n

and

<p (—) = i + c 22 »-1 + 22 o(«-3).
\2rw/

Since the second series converges and the first diverges, we see that

the series (8) fails to define <£(0 for t=l/2itm.

On the other hand, we can show that: if \ = ew and a(t) is differ-

entiate with a'&CB V[0, T] and a(0) =0, then (4) defines a continuous

solution of (1).
With the above hypothesis, (6) can be written
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kn * a = Cn~* jexp (—) [-'3/M0 + *6/V(o]

rl        (  in2  \V3
+  I    exp I--J   — (* - sy2a(s) ds

- 3(t - s)*'2a'(s) ds+(t- s)*'2 da'(*)l| .

As in the proof of Theorem 1, we obtain | kn * a\ gBn~% where B is

independent of n and t. Thus the series (4) converges uniformly and

absolutely so that the conclusions follow exactly as in Theorem 1.

References

1. E. L. Roetman, Vibration of elastic bars, Ph.D. Thesis, Oregon State University,

Corvallis, Ore., 1963.

2. E. W. Hobson, Theory of functions of a real variable, Vol. 1, Dover, New York,

1957.
3. R. Cooper, The behavior of certain series associated with limiting cases of elliptic

theta-functions, Proc. London Math. Soc. (2) 27 (1928), 410-426.

Stevens Institute of Technology


