A characterization of tame $2$-spheres in $E^{3}$
HTML articles powered by AMS MathViewer
- by C. A. Persinger
- Proc. Amer. Math. Soc. 17 (1966), 213-214
- DOI: https://doi.org/10.1090/S0002-9939-1966-0189004-4
- PDF | Request permission
References
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294β305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- C. A. Persinger, Subsets of $n$-books in $E^{3}$, Pacific J. Math. 18 (1966), 169β173. MR 195077
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 213-214
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1966-0189004-4
- MathSciNet review: 0189004