Uncountably many different involutions of $S^{3}$
HTML articles powered by AMS MathViewer
- by W. R. Alford
- Proc. Amer. Math. Soc. 17 (1966), 186-196
- DOI: https://doi.org/10.1090/S0002-9939-1966-0190911-7
- PDF | Request permission
References
- J. W. Alexander, On the subdivision of $3$-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
- R. H. Bing, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1–15. MR 123302
- R. H. Bing, A homeomorphism between the $3$-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354–362. MR 49549, DOI 10.2307/1969804
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465–483. MR 87090
- R. H. Bing, Point-like decompositions of $E^{3}$, Fund. Math. 50 (1961/62), 431–453. MR 137104, DOI 10.4064/fm-50-4-431-453
- Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Ginn and Company, Boston, Mass., 1963. Based upon lectures given at Haverford College under the Philips Lecture Program. MR 0146828
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Deane Montgomery and Leo Zippin, Examples of transformation groups, Proc. Amer. Math. Soc. 5 (1954), 460–465. MR 62436, DOI 10.1090/S0002-9939-1954-0062436-2
- P.A. Smith, Fixed-point theorems for periodic transformations, Amer. J. Math. 63 (1941), 1–8. MR 3199, DOI 10.2307/2371271 Ta-Sun Wu, On the involutions of the three sphere, Abstract 61T-268, Notices Amer. Math. Soc. 8 (1961), 518.
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 186-196
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1966-0190911-7
- MathSciNet review: 0190911