PARTIALLY ORDERED GROUPS OF THE SECOND AND THIRD KINDS

A. H. CLIFFORD

1. Introduction. Let G be both a group and a partially ordered set. An element a of G is called a left [right] conserver if

$$x \leq y (x, y \in G) \Rightarrow ax \leq ay [xa \leq ya]$$

and a left [right] inverter if

$$x \leq y (x, y \in G) \Rightarrow ax \geq ay [xa \geq ya].$$

We shall call an element of G a conserver [inverter] if it is both a left and a right conserver [inverter].

If every element of G is a conserver, then G is a partially ordered group (abbreviated “po-group”) in the usual sense; we shall also say that G is a po-group of the first kind. If every element of G is a conserver or an inverter, and not every element of G is a conserver, then we shall call G a po-group of the second kind. A familiar example is the multiplicative group of all nonzero real numbers with the usual ordering. The stipulation that not every element of G is a conserver excludes the possibility that G be trivially ordered, and it is then clear that no element of G can be both a conserver and an inverter.

The structure of totally ordered groups (“o-groups”) of the second kind has been reduced to that of o-groups of the first kind by J. A. H. Shepperd [1]. (What he calls a “betweenness group” is either an o-group of the first or second kinds, or a finite group of order 4.) The first main result of the present note (Theorem 1) is an extension of Shepperd’s result from o-groups to po-groups. The proof has also been simplified by avoiding reference to the betweenness relation.

Totally ordered semigroups (“o-semigroups”) of the second kind have been considered by the author [2] in the commutative case, and by J. Gilder [3] and K. Keimel [4] in general. Following Gilder’s terminology, we define a po-group of the third kind to be a group G endowed with a nontrivial partial order, such that each element of G is either a left conserver or a left inverter, and also either a right conserver or a right inverter, and such that G contains an element which conserves on one side and inverts on the other. Theorem 2 gives a reduction of these to po-groups of the first kind.
Added in proof. The author regrets that he was not aware at the time of writing this paper that a result equivalent to Theorem 1 below had been obtained by J. F. Andrus and A. T. Butson [5] for a connected po-group of the second kind. The two approaches are also different, however, that the equivalence of the results is not apparent. Their subgroup S_0 is the (directed) po-subgroup of my subgroup H generated by its positive cone H_+. My subset I_- of $G \setminus H$ is the union of those cosets of S_0 in G which belong to their subset T_0 of the factor group G/S_0. Removing their requirement of connectedness actually simplifies more than it complicates. Thus the six properties (i)–(vi) which T_0 must have in their Theorem 5 reduce to (i), (iv), (v), and the requirement that there exists a subgroup H of index 2 in P ($=G/S_0$) such that $T_0 \subseteq G \setminus H$. (Incidently, (v) should read “$a + T_0 = T_0$.”) This is an immediate consequence of Theorem 1 below, in the case $H_+ = 0$.

2. Partially ordered groups of the second kind. We denote the identity element of G by e, and set

$$G_+ = \{ a \in G : a \geq e \}, \quad G_- = \{ a \in G : a \leq e \}.$$

For any subset A of G, we let $A_+ = A \cap G_+$, $A_- = A \cap G_-$, and $A^{-1} = \{ a^{-1} : a \in A \}$. A (possibly empty) subset A of G is called an upper [lower] class in G if $a \in A$, $x \in G$, and $a < x$ [$a > x$] imply $x \in A$. The empty set is denoted by \emptyset, and $A \setminus B$ means the set of elements of A not in B.

By the order dual G^* of G we mean the group G endowed with the dual $^* \colon a \mapsto a^*$. G and G^* have the same sets of left [right] conservers and inverters.

Theorem 1. Let G be a po-group of the second kind. Let $H[I]$ be the set of conservers [inverters] of G. Then H is a subgroup of G of index 2, and I is its other coset. H is a po-group of the first kind, and H_+ is normal in G. H and I are convex subsets of G, and, by passing to the order dual of G if necessary, we can assume that H is an upper class and I a lower class in G. In particular, $H_+ = G_+$, $I_+ = \emptyset$, and I_- is a lower class in G. The set I_- has the following properties:

(N1) I_- is normal in G.
(N2) $I_+^{-1} = I_-$.
(N3) I_- contains $H_+ I_-$, $I_- H_+$, $H_+ I_-$, and $I_- H_-$.

The order relation \leq can be described in terms of H_+ and I_- as follows:

(O1) If $x \in H$, $y \in H$, then $x \leq y \iff x^{-1} y (\text{or } y x^{-1}) \in H_+$.
(O2) If $x \in I$, $y \in I$, then $x \leq y \iff y x^{-1} (\text{or } y^{-1} x) \in H_+$.
(O3) If $x \in I$, $y \in H$, then $x \leq y \iff x y^{-1} (\text{or } y^{-1} x \text{ or } x^{-1} y \text{ or } y x^{-1}) \in I_-.$
If \(x \in H, y \in I \), then \(x \leq y \) never holds.

If \(H \) is directed, then \(I_- \) must be \(I \) or \(\emptyset \). If \(I_- = I \), then every element of \(I \) is less than every element of \(H \). If \(I_- = \emptyset \), then no element of \(I \) is comparable with any element of \(H \).

Conversely, let \(G \) be a group containing a subgroup \(H \) of index 2, and let \(I = G \setminus H \). Assume that \(H \) is a po-group of the first kind, and that its positive cone \(H^+ \) is normal in \(G \). Let \(I_- \) be a subset of \(I \) having properties (N1–3). Define \(\leq \) in \(G \) by (O1–4). This agrees with the given partial order in \(H \) by (O1), and \(G \) becomes thereby a po-group of the second kind such that \(H[I] \) is the set of conservers [inverters] of \(G \).

Remarks. (1) If (N1) and (N2) hold, and if \(I_- \) contains any one of the four product sets in (N3), then it contains the other three.

(2) Regarding the parenthetical assertions in (O3), we note that if \(I_- \) is any subset of \(I \) satisfying (N1) and (N2), and if any one of the four products \(xy^{-1}, y^{-1}x, x^{-1}y, yx^{-1} \) belong to \(I_- \), then so do the remaining three. A similar remark applies to (O1) and (O2), since \(H^+ \) is normal in \(G \).

Proof. Evidently the product of two conservers or of two inverters is a conserver, while that of a conserver and an inverter is an inverter. Since the identity element \(e \) of \(G \) is a conserver, the inverse of a conserver [inverter] must be of the same type. From these remarks it is clear that \(H \) is a subgroup of \(G \) of index 2, that \(I = G \setminus H \), and that \(H \) is a po-group of the first kind.

If \(p \in H^+ \) and \(u \in I \), then from \(e \leq p \) we have \(u \leq pu \) and \(e = u^{-1}u \leq u^{-1}pu \). Thus \(u^{-1}H^+u \subseteq H^+ \). Since \(H^+ \) is normal in \(H \), this shows that it is normal in \(G \).

To show that \(H \) is convex in \(G \), it clearly suffices to show that \(e < u < h (h \in H, u \in I) \) is impossible. Multiplying \(e < u < h \) on the left by the inverter \(u \), and on the right by the conserver \(h \), we obtain \(u > u^2 > uh \) and \(h < uh < h^2 \). But this yields \(u > uh > h \), contrary to \(u < h \).

To show that \(I \) is convex in \(G \), suppose that \(u > h > u' (h \in H; u, u' \in I) \). Then \(e < hu^{-1} < u'u^{-1} \). Since \(u'u^{-1} \in H \) and \(huu^{-1} \in I \), this contradicts the convexity of \(H \).

From \(G = H \cup I \) it follows that \(H \) must be either an upper class or a lower class in \(G \). By passing to the order dual of \(G \), if necessary, we can assume that \(H \) is an upper class. Then \(I \) is a lower class. Since \(e \in H \), we have \(G^+ \subseteq H \), and hence \(H^+ = G^+ \) and \(I^+ = \emptyset \). \(I_- \) is clearly a lower class in \(I \), hence also in \(G \).

If \(u \in I_- \) and \(v \in I \), then from \(u < e \) we have \(uv > v \) and \(v^{-1}uv < v^{-1}v = e \), hence \(v^{-1}uv \in I_- \). Similarly, \(h^{-1}uh \in I_- \) for every \(h \) in \(H \), which proves (N1). To show (N2), we note that \(u < e \) (\(u \in I \)) implies \(e = uu^{-1} > eu^{-1} = u^{-1} \), hence \(u^{-1} \in I_- \). By Remark (1), to estab-
lish (N3) we need only show that $H+I_\subseteq I_-$. From $h>e$, $u<e$ ($h\in H$, $u\in I$), we have $hu<eu=e$, so that $hu\in I_-$. (O1) is a standard fact about po-groups, and (O4) is just the assertion that H is an upper class in G. To show (O2), we note that $x\leq y$ is equivalent to $xy^{-1}\geq e$, since $y\in I$. To show (O3), we observe that $x\leq y$ is now equivalent to $xy^{-1}\leq yy^{-1}=e$, since $y\in H$.

If H is directed, then $H=H_+H_-$, and (N3) implies that $HI_-\subseteq I_-$. If $I_\neq \emptyset$, let $u\in I_-$. Then $I=H_\subseteq I_-$, whence $I_-\subseteq I$.

Turning to the converse, let H be a subgroup of G of index 2, and let H be a po-group of the first kind such that H_+ is normal in G. Let $I=G\setminus H$. Let I_- be a subset of I having properties (N1-3), and define \leq in G by (01-4). (O1) asserts that the restriction of \leq to H shall coincide with the given partial ordering of H.

That the relation \leq is reflexive and antisymmetric is clear. To prove that it is transitive, let $x\leq y$ and $y\leq z$ ($x, y, z\in G$). (O4) implies that if $x\in H$ then $y\in H$, and if $y\in H$ then $z\in H$. Since we do not need to consider the case $x, y, z\in H$, we are left with three cases.

Case $x\in I$, $y\in H$, $z\in H$. By (O3) and (O1) we have $x^{-1}y\in I_-$ and $y^{-1}z\in H_+$. By (N3), $x^{-1}z=(x^{-1}y)(y^{-1}z)\in I_-$, and $x\leq z$ by (O3).

Case $x\in I$, $y\in I$, $z\in H$. By (O2) and (O3) we have $xy^{-1}\in H_+$ and $yz^{-1}\in I_-$. By (N3), $xz^{-1}=(xy^{-1})(yz^{-1})\in I_-$, and $x\leq z$ by (O3).

Case $x\in I$, $y\in I$, $z\in I$. By (O2) we have $xy^{-1}\in H_+$ and $yz^{-1}\in H_+$. Hence $xz^{-1}=(xy^{-1})(yz^{-1})\in H_+$, and $x\leq z$ by (O2).

Hence G is a po-set under \leq. All that remains is to show that every element of $H[I]$ is a conserver [inverter]. Since every element of H is the product of two elements of I, it suffices to show that every element of I is an inverter.

Let $u\in I$, and let $x\leq y$. The case $x\in H$, $y\in I$ is excluded by (O4), and we consider the remaining three.

Case $x\in H$, $y\in H$. By (O1), $x^{-1}y$ and $yx^{-1}\in H_+$. Hence $(ux)^{-1}(uy)$ and $(yu)(xu)^{-1}\in H_+$, and we infer from (O2) that $uy\leq ux$ and $yu\leq xu$.

Case $x\in I$, $y\in I$. By (O2), xy^{-1} and $y^{-1}x\in H_+$. Hence $(xu)(yu)^{-1}$ and $(yu)^{-1}(ux)\in H_+$, and we infer from (O1) that $yu\leq xu$ and $uy\leq ux$.

Case $x\in I$, $y\in H$. By (O3), $x^{-1}y$ and $yx^{-1}\in I_-$. Hence $(ux)^{-1}(uy)$ and $(yu)(xu)^{-1}\in I_-$, and we infer from (O3) that $uy\leq ux$ and $yu\leq xu$.

This concludes the proof of the theorem.

Let us consider all possible ways of extending a given po-group H of the first kind to a po-group G of the second kind, such that H is the set of conservers of G. In the first place, G must be an extension of H by the cyclic group C_2 of order 2; the Schreier theory tells us how to find all such. Call G "suitable" if H_+ is normal in G; there is at
least one suitable G, namely the direct product $H \times C_2$. Any suitable G can be partially ordered in the desired fashion by choosing I_- so as to satisfy (N1-3). This can always be done by choosing I or \emptyset for I_-, and these are the only possibilities if H is directed. If G itself is to be directed, only $I_- = I$ is possible, and then every element of H exceeds every element of I. In this case we note that G will be lattice-ordered or totally ordered if and only if the same holds for H.

If H is trivially ordered, then $I_- \neq \emptyset$, since G cannot be trivially ordered. As a simple example with $I_- \neq I$, let G be the infinite cyclic group generated by a, let H be the subgroup generated by a^2, and let $I_- = \{a, a^{-1}\}$. The resulting partial order on G has a saw-tooth nature:

$$\cdots > a^{-3} < a^{-2} > a^{-1} < e > a < a^2 > a^3 < \cdots .$$

3. Partially ordered groups of the third kind. We define the following four subsets of a po-group G of the third kind. Let $C_2 = \{0, 1\}$ be the additive group of integers mod 2, so that $1 + 1 = 0$. For i and j in C_2 let G_{ij} be the set of all elements a of G such that a is a left conservator if $i = 0$, a left inverter if $i = 1$, a right conservator if $j = 0$, and a right inverter if $j = 1$.

From the way left and right conservers and inverters multiply,

$$G_{ij}G_{kl} = G_{i+k,j+l} \quad (i, j, k, l \in C_2).$$

By definition of po-group of the third kind,

$$G = G_{00} \cup G_{01} \cup G_{10} \cup G_{11}, \quad G_{01} \cup G_{10} \neq \emptyset.$$
po-group of the first kind such that its positive part P satisfies (N'1–2), with G_{ij} replaced by H_{ij}. Define a relation \leq on G by (O'1–2), similarly modified, with \leq never holding between elements of distinct H_{ij}. Then G becomes a po-group of the third kind, with $G_{ij} = H_{ij}$. The same holds in the event $G/H_{00} \cong C_2$ if we let $H_{11} = \emptyset$, and either $H_{01} = \emptyset$ or $H_{10} = \emptyset$.

Proof. The first three sentences are obvious. (N'1) then follows from Theorem 1. To show (N'2), let $p \in P$ and let $a \in G_{01}$. From $e < p$ we have $a < ap$, since a is a left conserver, and hence $e > apa^{-1}$, since a is a right inverter. Thus $apa^{-1} \in P^{-1}$. The proof for a in G_{10} is similar.

We note that the identity element e of G cannot be comparable with any element of G_{01} or G_{10}. For if $e < a$ ($a \in G_{01}$), then $a < a^2$ since a is a left conserver, and hence $e > a^2$, since a is a right inverter. The argument is similar if $e > a$, or if $a \in G_{10}$. Moreover, e cannot be comparable with an element a of G_{11}. For suppose $a \in G_{01}$. Then $ba < b$ and $bab^{-1} > e$, since $b^{-1} \in G_{01}$. But $bab^{-1} \in G_{01}G_{11}G_{01} = G_{11}$, and $a < e < bab^{-1}$ would violate the convexity of $I = G_{11}$ in the po-group $G_{00} \cup G_{11}$ of the second kind (Theorem 1). The argument is similar if $e < a$.

Now let a and b be any two elements of G such that $a < b$. Then $aa^{-1} < ba^{-1}$ or $aa^{-1} > ba^{-1}$, depending on whether a^{-1} is a right conserver or a right inverter. In either case, ba^{-1} is comparable with e, and so belongs to G_{00}. Hence a and b belong to the same coset G_{ij}.

To show (O'1), $x \leq y \iff e \leq x^{-1}y \iff x^{-1}y \in P$, since x is a left conserver. As for (O'2), x is a left inverter, and so $x \leq y \iff e \geq x^{-1}y \iff x^{-1}y \in P^{-1}$.

Proceeding to the converse, let us introduce the notation $P_0 = P$, $P_1 = P^{-1}$, where $0, 1 \in C_2$. Then, for any k in C_2, $P_k = P_{k+1}$. The modified rules (N'1–2) and (O'1–2) can then be condensed into single formulae:

(N') if $a \in H_{ij}$, then $aPa^{-1} \subseteq P_{i+j}$;

(O') if $x, y \in H_{kl}$, then $x \leq y \iff x^{-1}y \in P_k$.

It is evident that \leq defined by (O') is reflexive and symmetric. If $x \leq y$ and $y \leq z$, then $x, y,$ and z all belong to the same H_{kl}, and $x^{-1}z = (x^{-1}y)(y^{-1}z) \in P_kP_k \subseteq P_k$, whence \leq is transitive.

To show that $H_{ij} = G_{ij}$, let $a \in H_{ij}$ and let $x \leq y$. Then x and y belong to the same H_{kl} and $x^{-1}y \in P_k$. From $(ax)^{-1}(ay) = x^{-1}y \in P_k$, and $ax, ay \in H_{i+k,j+l}$, (O') gives $ax \leq ay$ if $i = 0$ and $ay \leq ax$ if $i = 1$. Since this is independent of k and l, we conclude that a is a left conserver if $i = 0$ and a left inverter if $i = 1$.

From $(xa)^{-1}(ya) = a^{-1}(x^{-1}y)a \in P_{k+k(i+j)} = P_{(i+k)+j}$ by (N'), and $xa, ya \in H_{i+k,j+l}$, we conclude from (O') that $xa \leq ya$ if $j = 0$ and $ya \leq xa$ if $j = 1$. Hence a is a right conserver if $j = 0$ and a right inverter if $j = 1$.
Let H be a po-group of the first kind. We saw at the conclusion of §2 that H can be extended in at least one way to a po-group G of the second kind. This is not so if G is to be of the third kind. In fact it is possible if and only if there exists an automorphism of H the square of which is inner, and which maps the positive cone P of H into P^{-1}. This is always possible if H is abelian, since $x\rightarrow x^{-1}$ is then an automorphism with these properties. But it is impossible if H is a group every automorphism of which is inner. For example, let H be the group of rational matrices of the form

$$
\begin{pmatrix}
a & b \\
0 & 1
\end{pmatrix}
$$

with $a > 0$, and define $P(H)$ to be the set of all such matrices with $a \geq 1$.

References

Newcomb College, Tulane University