A Bessel function inequality connected with stability of least square smoothing
HTML articles powered by AMS MathViewer
- by Lee Lorch and Peter Szego
- Proc. Amer. Math. Soc. 17 (1966), 330-332
- DOI: https://doi.org/10.1090/S0002-9939-1966-0190605-8
- PDF | Request permission
References
- Z. Ciesielski, A note on some inequalities of Jensen’s type, Ann. Polon. Math. 4 (1958), 269–274. MR 97480 R. G. Cooke, Gibbs’ phenomenon in Fourier-Bessel series and integrals, Proc. London Math. Soc. 27 (1928), 171-192. —, A monotonic property of Bessel functions, J. London Math. Soc. 12 (1937), 180-185.
- Lee Lorch and Peter Szego, A singular integral whose kernel involves a Bessel function, Duke Math. J. 22 (1955), 407–418. MR 87774
- L. Lorch and P. Szego, A singular integral whose kernel involves a Bessel function. II, Acta Math. Acad. Sci. Hungar. 13 (1962), 203–217. MR 147681, DOI 10.1007/BF02033639
- E. Makai, On a monotonic property of certain Sturm-Liouville functions, Acta Math. Acad. Sci. Hungar. 3 (1952), 165–172 (English, with Russian summary). MR 54103, DOI 10.1007/BF02022519
- Herbert S. Wilf, The stability of smoothing by least squares, Proc. Amer. Math. Soc. 15 (1964), 933–937. MR 167764, DOI 10.1090/S0002-9939-1964-0167764-4
- H. S. Wilf, Errata: The stability of smoothing by least squares, Proc. Amer. Math. Soc. 17 (1966), 542. MR 190604, DOI 10.1090/S0002-9939-1966-0190604-6
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 330-332
- MSC: Primary 41.99
- DOI: https://doi.org/10.1090/S0002-9939-1966-0190605-8
- MathSciNet review: 0190605