Primitive idempotents in group algebras
HTML articles powered by AMS MathViewer
- by G. J. Janusz
- Proc. Amer. Math. Soc. 17 (1966), 520-523
- DOI: https://doi.org/10.1090/S0002-9939-1966-0194523-0
- PDF | Request permission
References
- W. Burnside, Theory of groups of finite order, 2nd ed., Cambridge Univ. Press, Cambridge, 1911.
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Walter Feit, On the structure of Frobenius groups, Canadian J. Math. 9 (1957), 587–596. MR 93541, DOI 10.4153/CJM-1957-067-8
- P. X. Gallagher, Group characters and normal Hall subgroups, Nagoya Math. J. 21 (1962), 223–230. MR 142671
- Michio Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math. 77 (1955), 657–691. MR 74411, DOI 10.2307/2372591
- John Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 578–581. MR 104731, DOI 10.1073/pnas.45.4.578
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 520-523
- MSC: Primary 20.80
- DOI: https://doi.org/10.1090/S0002-9939-1966-0194523-0
- MathSciNet review: 0194523