A NOTE ON SPLITTING IN SOLVABLE GROUPS

ERNEST E. SHULT

1. Introduction. The theorem presented below generalizes theorems of E. Schenkman [5] and G. Higman [4] concerning splitting in finite solvable groups. This generalization is achieved by applying results from the theory of formations recently developed by W. Gaschütz [2], [3]. All groups considered here are finite and solvable. A formation, \mathcal{F}, is a collection of groups closed under taking homomorphisms and subdirect products. It follows that every group, G, contains a characteristic subgroup, $G_\mathcal{F}$, minimal with respect to the property that $G/G_\mathcal{F} \in \mathcal{F}$. A formation, \mathcal{F}, is called saturated, if $G/\phi(G) \in \mathcal{F}$ implies $G \in \mathcal{F}$ for all G (see [3]). F is called an \mathcal{F}-subgroup of G if $F \in \mathcal{F}$ and if $F \leq H \leq G$ implies $FH_\mathcal{F} = H$. A theorem of Gaschütz [2], states that if \mathcal{F} is saturated, \mathcal{F}-subgroups of G always exist and are conjugate in G.

Theorem. Let \mathcal{F} be a saturated formation and suppose that for a finite solvable group, G, $G_\mathcal{F}$ is abelian. Then:

(i) the \mathcal{F}-subgroups of G complement $G_\mathcal{F}$.

(ii) all complements of $G_\mathcal{F}$ in G are conjugate and hence are \mathcal{F}-subgroups of G.

Let $L_0(G) = G$ and let $L_i(G)$ be the ith term of the lower nilpotent series of G. If \mathcal{F} denotes the formation of groups having nilpotent length $\leq k - 1$, the theorem yields a theorem of Higman [4] which states that if $L_k(G)$ is abelian, G splits over $L_k(G)$ and all complements of $L_k(G)$ in G are conjugate. (This statement becomes a theorem of Schenkman [5] when $k = 2$.) R. Carter [1] was able to identify the complements in Higman's theorem as the relative system normalizers of $L_{k-1}(G)$ in G. From (ii) we may also identify them as the \mathcal{F}-subgroups of G (or as the Carter subgroups of G when $k = 2$). Our theorem yields a number of other interesting results on splitting when \mathcal{F} ranges over various saturated formations, for example, groups having nilpotent commutator subgroups, supersolvable groups, groups G, for which G/G' is a π-group, etc.

2. Preliminary results and proof of the theorem. Our proof employs a number of basic results of Gaschütz. First if F is an \mathcal{F}-subgroup...
of \(G \), \(F \subseteq H \subseteq G \) implies that \(F \) is an \(\Phi \)-subgroup of \(H \). Also if \(N \) is normal in \(G \), \(FN/N \) is an \(\Phi \)-subgroup of \(G/N \) and every \(\Phi \)-subgroup of \(G/N \) has the form \(F_0N/N \) where \(F_0 \) is an \(\Phi \)-subgroup of \(G \). Let \(\pi \) and \(\pi' \) denote a partition of the set of primes. \(O_{\pi'}(G) \) denotes the maximal normal \(\pi' \)-subgroup of \(G \) and \(O_{\pi'\pi}(G) \) denotes the subgroup of \(G \) for which \(O_{\pi'\pi}(G)/O_{\pi'}(G) \) is the maximal normal \(\pi \)-subgroup of \(G/O_{\pi'}(G) \). A formation, \(\Phi \), is said to be locally defined if for some sequence of (possibly empty) formations, \(f(\pi) \), \(\pi \) ranging over the primes, \(G \in \Phi \) if and only if there is \(\pi \) ranging over the primes, \(G \in \Phi \) if and only if \(\pi \) ranging over the primes, \(G \in \Phi \) if and only if \(\pi \).\(\phi \) \subseteq \(G \) otherwise. Gaschütz proved \([2] \) that all locally defined formations are saturated and recently has announced \(2 \) the important result that, conversely, all saturated formations are locally defined by some sequence of local formations \(\{ f(\pi) \} \).

Proof of the theorem. (i) If \(G_\Phi = E \), \(G \) is its own \(\Phi \)-subgroup and the theorem is trivial. Suppose then that \(G_\Phi \neq E \). Let \(F \) be an \(\Phi \)-subgroup of \(G \). Since \(FG_\Phi = G \), to prove (i) it suffices to show that \(FC \subseteq G_\Phi \neq E \). Suppose \(FC \subseteq G_\Phi \neq E \). Then since \(G_\Phi \) is abelian, \(F \subseteq G_\Phi \) is normal in \(G \). Let \(N \) be a minimal normal subgroup of \(G \). Then \((G/N)_\Phi = G_\Phi N/N \) is abelian and \(FN/N \) is an \(\Phi \)-subgroup of \(G/N \). By induction, \(FN/N \subseteq G_\Phi N \subseteq N \). Thus \(FC \subseteq G_\Phi \subseteq N \). It follows that \(F \subseteq G_\Phi = N_\Phi \), the unique minimal normal subgroup of \(G \).

Suppose \(N_\Phi = G_\Phi \). Then \(G = FN_\Phi = F \subseteq \Phi \) whence \(G_\Phi = E \), a contradiction. Hence \(N_\Phi \subseteq G_\Phi \).

Suppose \(F \subseteq H \subseteq G \). Then \(HG_\Phi = G \) and so \(G/G_\Phi \simeq H/(H \cap G_\Phi) \subseteq \Phi \) whence \(H_\Phi \subseteq G_\Phi \). Since \(H_\Phi \) is now forced to be abelian and \(F \) is an \(\Phi \)-subgroup of \(H, FC \subseteq H_\Phi \neq E \) by induction on \(H \). On the other hand the fact that \(G_\Phi \) is abelian implies \(H_\Phi \) is normal in \(G \) and hence \(H_\Phi \cap F \) contains \(N_\Phi \), a contradiction. Thus \(F \) is maximal in \(G \) and \(G_\Phi /N_\Phi \) and \(N_\Phi \) are successive chief factors of \(G \). From the uniqueness of \(N_\Phi \), \(G_\Phi \) is an abelian \(\Phi \)-group.

Let \(Q \) be a \(\Phi' \)-subgroup of \(G \) such that \(QG_\Phi \) is normal in \(G \). Then, since \(G_\Phi \) is abelian, \(Q = C_{G_\Phi}(Q) \times [Q, G_\Phi] \) where each component is normal in \(G \). Suppose \([Q, G_\Phi] \neq G_\Phi \). Then uniqueness of \(N_\Phi \) implies \(C_{G_\Phi}(Q) = G_\Phi \) and \(Q \) is then normal in \(G \). Because of the uniqueness of \(N_\Phi \), \(Q = E \). Thus if \(QG_\Phi \Delta G \) either \(Q = E \) or \(G_\Phi \neq [Q, G_\Phi] \).

Choose \(B_\Phi \) so that \(B_\Phi /N_\Phi = Q_\Phi(G/N_\Phi) \), and set \(T_\Phi = O_{\Phi'\Phi}(F) \). We shall show that \(T_\Phi \subseteq B_\Phi \).

Suppose \(\Phi \neq \Phi' \). Then \(G_\Phi \subseteq O_{\Phi'}(G) \), and \(T_\Phi G_\Phi \) is \(\Phi \)-nilpotent and normal in \(G \). Hence \(T_\Phi G_\Phi \subseteq O_{\Phi'\Phi}(G) \subseteq B_\Phi \).

Suppose $q = p$. Set $Q_0 = O_{p'}(F)$. Since $Q_0G_{\mathfrak{F}}$ is normalized by both F and $G_{\mathfrak{F}}$, it is normal in G. By a previous remark, if $Q_0 \neq E$, $G_{\mathfrak{F}} = [Q_0, G_{\mathfrak{F}}]$. But the latter is impossible since $Q_0 \subseteq O_{p'}(F)$ and $N_0 \subseteq O_p(F)$ imply $[Q, N_0] = E$. Thus $Q_0 = E$. As a result, $T_p = O_p(F)$ and $T_pG_{\mathfrak{F}}$, being normalized by F and $G_{\mathfrak{F}}$, lies in $O_p(G) \subseteq B_p$. Hence $T_p \subseteq B_p$.

Since \mathfrak{F} is saturated, we may assume \mathfrak{F} is locally defined by $\{f(p)\}$. Thus $F \subseteq \mathfrak{F}$ implies $F/T_q \subseteq f(q)$ for each prime q dividing $|F|$. Since $T_q \subseteq B_q$, it follows that $G/B_q \cong F/(F \cap B_q)$ is a homomorphic image of F/T_q. Thus $G/B_q \subseteq f(q)$ for each prime, q, dividing $[G:N_0]$. Since \mathfrak{F} is locally defined by $\{f(q)\}$, $G/N_0 \subseteq \mathfrak{F}$ whence $G_{\mathfrak{F}} \subseteq N_0$, a contradiction, and (i) is proved.

(ii) In proving the second part of the theorem it suffices to show that every complement, K, of $G_{\mathfrak{F}}$ in G, is an \mathfrak{F}-subgroup of G. Again, there is nothing to prove if $G_{\mathfrak{F}} = E$. We suppose that $G_{\mathfrak{F}} \neq E$. Let K be an arbitrary complement of $G_{\mathfrak{F}}$ in G and choose N minimal normal in G contained in $G_{\mathfrak{F}}$. Then $KN \cap G_{\mathfrak{F}} = (K \cap G_{\mathfrak{F}})N = N$ so KN/N is a complement of $G_{\mathfrak{F}}/N = (G/N)_{\mathfrak{F}}$ in G/N. By induction KN/N is an \mathfrak{F}-subgroup of G/N and so $KN = FN$ where F is an \mathfrak{F}-subgroup of G.

Suppose $N \subseteq G_{\mathfrak{F}}$. Then $KN = FN \subseteq G$. Now from (i), $F \cap N \subseteq F \cap G_{\mathfrak{F}} = E$ and so $F \subseteq FN$. Consequently, $(FN)_{\mathfrak{F}}$, being a nontrivial characteristic subgroup of N must coincide with N. Since K complements $(KN)_{\mathfrak{F}} = N$ in KN, induction on KN yields that K is an \mathfrak{F}-subgroup of KN. Since F is an \mathfrak{F}-subgroup of KN as well as G, K and F are conjugate in KN. Thus K is an \mathfrak{F}-subgroup of G.

Suppose $N = G_{\mathfrak{F}}$. Then $K \subseteq \mathfrak{F}$ and K is maximal in G. Under these circumstances K satisfies the defining properties of an \mathfrak{F}-subgroup of G.

References

Southern Illinois University