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In this note, an example is constructed which gives a negative an-

swer to the following question posed by R. S. Pierce [2, p. 367].

Let 73 be a basic £-group, and 73 the torsion completion of 73. Let P

be a subgroup of the socle of 73 such that 73 [|>]C?. Let a be an endo-

morphism of 73 such that a(P) C?, Does there exist a pure subgroup

G of 73 such that 73CG, G[p] =P and a(G) CG?
Let N be the set of positive integers and let 73= E>'e«- ©73,- be a

standard basic group with projections p<: 73—>Bt. Note that B{= {bi}

is cyclic and of order p'. For notational convenience, let c, = ^'-1&,-.

Let y= E''eAr Cn and let P be the subgroup of 73[p] generated by

73 [p] and {y}. Let a be the endomorphism of 73 determined by the

conditions:

bi + p2bi+i       iii = 3n

a(bi) = ■      pbi+x if i = 3n + 1

bi if i = 3n + 2.

It follows that a(y) =y and that a(73)C73. Thus,

a(P) = a(73[£] + {y}) C a(B[p\) + a([y]) C 73^] + {?} = P.

Suppose there is a pure subgroup G of 73 such that BQG, G[p]=P

and a(G)CG. Let x= E»e^;<>2 aibiEiG be such that px = y. There

must be such an element x since 73CG, G is pure in £ and since the

height of y in 73 is 2. Now for each i£7V, p3,-(a(x) — x) =0 since

p3,(x) =a3i&3i=P3,a(a3.&3i) =p3;a(x). Also, a(x) — x£P since p(a(x) —x)

= a(y)—y = 0. Consequently, by the definition of P, a(x)— x£73. It

follows that pi(a(x)— x) =0 for all but a finite number of indices

i£;N. Now, since

«(*) = E 03ia(7>3.') + E «3i+ia(&3i+i) + E a3<+2a(&3i+2)
i€N »'eiV «'eiv

=   E (a3»7>3i +  aup^ba+l + CT3i+1^3.+2 + 03i+2&3»+2),

a(a;) — x = E (03>/>2 — a3,+i)63i+i + E «3»+i^3i+2-
tew ieN
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Therefore

P3i+2(a(x) — x) = au+\pbzi+2

and

P3i+i(a(x) — x) = (azip2 — azi+i)bsi+1.

Thus, if pt(a(x)—x) =0 for almost all i(E.N, then pZi+1 divides au+i

and, consequently, pu+1 divides aup2 for almost all indices tGJV. This

implies that pu-1 divides a3i for almost all i. Thus,

Pu(y) = ppu(x) = pa3ibzi = 0

for almost all i(E.N, contradicting the definition of y. Therefore, no

such pure subgroup G exists.
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