A PROBLEM ON ENDOMORPHISMS OF PRIMARY ABELIAN GROUPS

ROBERT W. STRINGALL

In this note, an example is constructed which gives a negative answer to the following question posed by R. S. Pierce [2, p. 367].

Let B be a basic p-group, and \overline{B} the torsion completion of B. Let P be a subgroup of the socle of \overline{B} such that $B[p] \subseteq P$. Let α be an endomorphism of \overline{B} such that $\alpha(P) \subseteq P$. Does there exist a pure subgroup G of \overline{B} such that $B \subseteq G$, G[p] = P and $\alpha(G) \subseteq G$?

Let N be the set of positive integers and let $B = \sum_{i \in N} \oplus B_i$ be a standard basic group with projections $\rho_i \colon B \to B_i$. Note that $B_i = \{b_i\}$ is cyclic and of order p^i . For notational convenience, let $c_i = p^{i-1}b_i$. Let $y = \sum_{i \in N} c_{3i}$ and let P be the subgroup of $\overline{B}[p]$ generated by B[p] and $\{y\}$. Let α be the endomorphism of \overline{B} determined by the conditions:

$$\alpha(b_i) = \begin{cases} b_i + p^2 b_{i+1} & \text{if } i = 3n \\ p b_{i+1} & \text{if } i = 3n + 1 \\ b_i & \text{if } i = 3n + 2. \end{cases}$$

It follows that $\alpha(y) = y$ and that $\alpha(B) \subseteq B$. Thus,

$$\alpha(P) = \alpha(B[p] + \{y\}) \subseteq \alpha(B[p]) + \alpha(\{y\}) \subseteq B[p] + \{y\} = P.$$

Suppose there is a pure subgroup G of \overline{B} such that $B \subseteq G$, G[p] = P and $\alpha(G) \subseteq G$. Let $x = \sum_{i \in N; i > 2} a_i b_i \in G$ be such that px = y. There must be such an element x since $B \subseteq G$, G is pure in \overline{B} and since the height of y in \overline{B} is 2. Now for each $i \in N$, $\rho_{3i}(\alpha(x) - x) = 0$ since $\rho_{3i}(x) = a_{3i}b_{3i} = \rho_{3i}\alpha(a_{3i}b_{3i}) = \rho_{3i}\alpha(x)$. Also, $\alpha(x) - x \in P$ since $p(\alpha(x) - x) = \alpha(y) - y = 0$. Consequently, by the definition of P, $\alpha(x) - x \in B$. It follows that $\rho_i(\alpha(x) - x) = 0$ for all but a finite number of indices $i \in N$. Now, since

$$\alpha(x) = \sum_{i \in N} a_{3i}\alpha(b_{3i}) + \sum_{i \in N} a_{3i+1}\alpha(b_{3i+1}) + \sum_{i \in N} a_{3i+2}\alpha(b_{3i+2})$$

$$= \sum_{i \in N} (a_{3i}b_{3i} + a_{3i}p^{2}b_{3i+1} + a_{3i+1}pb_{3i+2} + a_{3i+2}b_{3i+2}),$$

$$\alpha(x) - x = \sum_{i \in N} (a_{3i}p^{2} - a_{3i+1})b_{3i+1} + \sum_{i \in N} a_{3i+1}pb_{3i+2}.$$

Received by the editors November 4, 1965.

Therefore

$$\rho_{3i+2}(\alpha(x) - x) = a_{3i+1}pb_{3i+2}$$

and

$$\rho_{3i+1}(\alpha(x)-x)=(a_{3i}p^2-a_{3i+1})b_{3i+1}.$$

Thus, if $\rho_i(\alpha(x)-x)=0$ for almost all $i \in \mathbb{N}$, then p^{3i+1} divides a_{3i+1} and, consequently, p^{3i+1} divides $a_{3i}p^2$ for almost all indices $i \in \mathbb{N}$. This implies that p^{3i-1} divides a_{3i} for almost all i. Thus,

$$\rho_{3i}(y) = p\rho_{3i}(x) = pa_{3i}b_{3i} = 0$$

for almost all $i \in N$, contradicting the definition of y. Therefore, no such pure subgroup G exists.

REFERENCES

- 1. L. Fuchs, Abelian groups, Publ. House Hungar. Acad. Sci. Budapest, 1958.
- 2. R. S. Pierce, Homomorphisms of primary abelian groups, Topics in Abelian Groups, Chicago, Ill., 1963.

University of California