INNER FACTORS AND BLASCHKE PRODUCTS

NORMAN RUSHFIELD

1. Introduction. Let $L_{2,v}$ denote the space of functions on the positive real axis into a separable Hilbert space V, such that $\int_0^\infty |f(x)|^2dx < \infty$ and for every $u \in V$, $(f(x), u)$ is measurable. Let $L_{2,v}^\wedge$ denote the space of Fourier transforms

$$\hat{f}(t) = \int_0^\infty f(x)e^{itz} dx,$$

where $f \in L_{2,v}$ and dx denotes $dx/2\pi$. The functions in $L_{2,v}^\wedge$ can be extended to analytic functions in the upper half plane. We denote this space of analytic functions by H_v. By the Paley-Wiener theorem, H_v is characterized by the property that $h \in H_v$ if and only if for some constant M and every $y > 0$, $\int_0^\infty (h(x+iy), h(x+iy))dx < M$. H_v is a Hilbert space with inner product $(f, g)_1 = \int_0^\infty (f(x), g(x))dx$.

Let T_s (for fixed $s > 0$) be the left translation operator on $L_{2,v}$, $T_s f(x) = f(x+s)$. The family $\{T_s | s \geq 0\}$ is a semigroup of operators.

Let r_s (for fixed $s > 0$) be the right translation operator on $L_{2,v}$:

$$r_s g(x) = \begin{cases} g(x - s), & \text{for } x - s \geq 0, \\ 0, & \text{for } x - s < 0. \end{cases}$$

The family $\{r_s | s > 0\}$ is a semigroup of isometric operators.

A subspace l of $L_{2,v}$ is said to be left invariant (an l-space) if for every $f \in l$, $\{T_s f | s \geq 0\} \subseteq l$.

A subspace r of $L_{2,v}$ is said to be right invariant (an r-space) if for every $g \in r$, $\{r_s g | s > 0\} \subseteq r$. It is easily seen that the orthogonal complement of an r-space is an l-space and vice-versa.

An inner factor is an operator valued function defined and analytic in the upper half plane such that for each z, $F(z) : W \rightarrow V$ (where W and V are separable Hilbert spaces), $\|F(z)\| \leq 1$, and for almost all real z, $F(z)$ is an isometry. If V is finite dimensional, and $W = V$ then $\det F$ (defined as the determinant of the matrix $(F(z)u_i, u_i)$, where u_i is an orthonormal basis for V) is a scalar inner factor.

Let R denote the Fourier transform space of an r-space. An R-space is characterized as being invariant under multiplication by

Received by the editors February 16, 1965.

1 This paper is a portion of the author's doctoral dissertation. The author would like to express his thanks to Professor P. D. Lax for suggesting the problems considered and for his guidance in the course of this work.

572
inner factors and blaschke products 573

Every (nonzero) closed \(R \)-space can be represented in the form \(R = F^vH_w \), where \(F^v \) is an inner factor and \(F^v(z) : W \to V \).

The inner factor corresponding to an \(R \)-space is unique to within multiplication on the right by a constant unitary operator. By regarding two inner factors as equivalent if they differ on the right by a constant unitary operator, we obtain a one-to-one correspondence between nonzero closed \(R \)-spaces and inner factors. This correspondence carries over to closed \(l \)-spaces (\(l \subset L_2 \)), where \(R \) is the Fourier transform space of \(r (=l^1) \) and will be denoted by a common subscript \(l \sim F_a \) (or lack of subscript, \(l \sim F \)). From the division theory of \([4]\), we have

Theorem B. \(l \subseteq l_b \) if and only if there exists an inner factor \(F_c \) such that \(F_b = F_aF_c \).

A (generalized) exponential is a function \(f \in L_2 \) of the form \(f = p(x)e^{i\lambda x} \) where \(p(x) \) is a polynomial with coefficients in \(V \), and \(\text{Im} \lambda > 0 \). We define the order of the exponential \(f \) as the degree of \(p(x) \); \(\lambda \) is called the exponent belonging to the exponential \(f \).

Definition. An inner factor \(F \) is said to be a Blaschke product if \(l \sim F \) is spanned by the exponentials contained in \(l \).

We show that in the case of scalar inner factors, our definition of a Blaschke product is equivalent to the standard definition.

Let \(\{v_j | j \in J\} \) denote the smallest closed \(l \)-space containing \(\{v_j | j \in J\} \). Let \(l = \{x^ke^{i\lambda x} | j \in J\} \); we note that

\[
[x^ke^{i\lambda x} | j \in J] = [p_{k_j} (x)e^{i\lambda x} | j \in J],
\]

where \(p_{k_j} \) is a polynomial of degree \(k_j \).

Let \(F \) be a Blaschke product according to the standard definition. We will show that \(l \sim F \) has a basis of exponentials. Let \(g \) be an arbitrary element of \(l \), and \(Fh = g \). If \(F \) has a zero of order \(m_j \) at \(z = -\lambda_j \), then it follows from the equation

\[
(Fh)^{k_i}(-\lambda_j) = \int_0^\infty g(x)(ix)^{k_i}e^{-i\lambda_j x} dx,
\]

that \(l_c = \{x^{m_i}e^{i\lambda_j x} | j \in J\} \subseteq l \).

We need only show that \(l \subseteq l_c \). If we substitute \(F_c \) \(\sim l_c \) for \(F \) in equation (1.1), and let \(g \) be an arbitrary element of \(l^1 \), we see that \(F \) has a zero of order \(m_j \) at \(z = -\lambda_j \). It then follows that \(F_c/F \) is an
inner factor. Thus F_e is of the form $F_e = F F_e$, so that by Theorem B, $l \subseteq l_e$.

Conversely, we let $l = \{x^{m_j-1} e^{i \beta_j z} | j \in J\}$, and show that $F (\sim l)$ is a standard Blaschke product. It follows from Equation (1.1) that F has a zero of order m_j at $z = \bar{\lambda}_j$. Let F_e be the standard Blaschke product with zeros of order m_j at $z = \bar{\lambda}_j$. Then F / F_e is an inner factor, so that $F = F_e F_a$. According to Theorem B, $l_e \subseteq l$. From equation (1.1) we see that $l \subseteq l_e$, so that $l_e = l$. This implies that F_a is constant, and completes the proof.

Definition. An inner factor $F(z)$ is said to be nonsingular if $\det F(z)$ has no zeros (in the upper half plane).

The following results are well known, but we sketch the proof of Theorem D for the sake of completion:

Theorem C. Every scalar inner factor F can be factored in the form $F = F_e F_n$, where F_e is a Blaschke product and F_n is nonsingular. F_e and F_n are uniquely determined to within a constant unitary factor.

Theorem D. If F is a scalar Blaschke product, and $F = F_a F_b$ then F_a and F_b are Blaschke products.

Proof. We factor F_a and F_b as in Theorem C to obtain $F_a = F_1 F_2$, $F_b = F_3 F_4$ (where F_1 and F_3 are Blaschke products and F_2 and F_4 are nonsingular). We must show that F_2 and F_4 are constant. We have $F = (F_1 F_3)(F_2 F_4)$. From Theorem C we see that $F_2 F_4$ is a constant unit. It then follows from the properties of inner factors that F_2 and F_4 are constant units.

2. **Results.** We consider the case where $V = W$ and is finite dimensional, and we prove the following two theorems:

Theorem 1. Every inner factor F can be factored in the form $F = F_e F_n$ where F_e is a Blaschke product and F_n is nonsingular.

Theorem 2. F is a Blaschke product if and only if $\det F$ is a Blaschke product.

We now have a generalization of Theorem D in the

Corollary. If F is a Blaschke product and $F = F_a F_b$ where F_a and F_b are inner factors, then F_a and F_b are Blaschke products.

To prove these results we need the following three lemmas; their proofs will be given in §3.

Lemma 1. If $\det F$ is constant, then F is a constant unitary operator.
Lemma 2. Let l_λ be the span of the exponentials (with exponent λ) which are contained in l, and let $F \sim l$. Then $\dim l_\lambda$ equals the order of the zero of $\det F(z)$ at $z = -\overline{\lambda}$.

Lemma 3. Let $\beta(z)$ be the Blaschke product factor of $\det F$. Let $l \sim F$, $l_\beta \sim \beta(z)I$, and let l_ϵ be the span of the exponentials which are contained in l. Then $l_\epsilon \subseteq l_\beta$.

Proof of Theorem 1. Let l_ϵ be the span of the exponentials contained in l ($\sim F$), and let $F_e \sim l_\epsilon$. According to Theorem B, there exists an inner factor F_n such that $F = F_e F_n$. Taking determinants of both sides, we have $\det F = \det F_e \det F_n$. Let d, d_ϵ, and d_n denote the order of the zero at $z = -\overline{\lambda}$ of $\det F$, $\det F_e$, and $\det F_n$ respectively, so that $d = d_\epsilon + d_n$. We must show that $d_n = 0$. Since l and l_ϵ have the same number of linearly independent exponentials with exponent λ, it follows from Lemma 2 that $d = d_\epsilon$.

Proof of Theorem 2. Assume that $\det F$ is a Blaschke product. We factor F as in Theorem 1: $F = F_e F_n$. We must show that F_n is constant. Taking determinants, we have $\det F = \det F_e \det F_n$. By virtue of Theorem D, $\det F_n$ is a Blaschke product. But since according to Theorem 1, $\det F_n$ has no zeros, it follows that $\det F_n$ is constant. Then by virtue of Lemma 1, F_n is constant.

Conversely, assume that F is a Blaschke product. Let $\beta(z)$ be the Blaschke product factor of $\det F$. Let $l \sim F$ and $l_\beta \sim \beta(z)I$. According to Lemma 3, $l \subseteq l_\beta$. Then by Theorem B, there exists an inner factor F_a such that $\beta(z)I = FF_a$. Taking determinants, we have $\beta^n(z) = \det F \det F_a$ (where $n = \dim V$). By virtue of Theorem D, $\det F$ is a Blaschke product.

3. Proofs of lemmas.

Proof of Lemma 1. Since $\det F(z) (= c)$ is an inner factor, we have $\det (F^*(z)F(z)) = c c = 1$. Let $\{a_j(z) \mid j = 1, \ldots, n\}$ be the eigenvalues of $F^*(z)F(z)$. Since $\|F^*(z)F(z)\| \leq 1$ (for $\Im z > 0$), and $F^*(z)F(z)$ is nonnegative, we have $0 \leq a_j(z) \leq 1$ ($j = 1, \ldots, n$). It then follows from the equation $\det (F^*(z)F(z)) = \prod_{j=1}^n a_j(z) = 1$ that all the eigenvalues of $F^*(z)F(z)$ are equal to one. Since $F^*(z)F(z)$ is symmetric, we thus have $F^*(z)F(z) = I$. Similarly $F(z)F^*(z) = I$, so that $F^*(z) = F^{-1}(z)$. Since $F(z)$ is analytic and $F^{-1}(z)$ is continuous, $F^{-1}(z)$ is analytic. But if $F(z)$ and $F^*(z)$ ($= F^{-1}(z)$) are both analytic, it follows that $F(z)$ is constant.

The proof of Lemma 2 is based on four sublemmas:

Lemma 3.1. Let $l = [ue^{i\alpha z}]$ where u is a given vector in V and $\Im > 0$. Then $F (\sim l)$ is (up to a constant unitary operator on the right) of the form...
(3.1) \[F = P + b(z)Q, \]
(3.2) \[b(z) = \frac{z + \bar{\lambda}}{z + \lambda}, \]

Q is the orthogonal projection onto the one dimensional space spanned by u, and \(P = I - Q. \)

Proof. Let \(l_p \sim P + b(z)Q. \) Then

\[\langle (P + b(z)Q)h_v, u \rangle = \langle h_v, P* u \rangle + b(z) \langle h_v, Q* u \rangle = b(z) \langle h_v, u \rangle. \]

Since \(b(-\bar{\lambda}) = 0, \) it follows from the equation

\[0 = \langle (P + b(-\bar{\lambda})Q)h_v(-\bar{\lambda}), u \rangle = \int_0^\infty (a_v, u)e^{-\bar{\lambda}x} \, dx \]

(where \(a_v \in l^1 \)) that \(l = [ue^{\bar{\lambda}x}] \subseteq l_p. \) From Theorem B we obtain \(P + b(z)Q = FF_a (where F \sim l). \) Taking determinants of both sides of the factorization equation we have \(b(z) = \det F \cdot \det F_a. \) It follows from Theorem D that either \(\det F \) or \(\det F_a \) is constant. If \(\det F \) were constant, then by Lemma 1, \(F \) would be a constant unitary operator. Clearly, this would imply that \(l = \{0\}. \) Thus by contradiction we see that \(\det F_a, \) and therefore \(F_a, \) must be constant, so that \(l = l_p. \)

Definition. An inner factor of the form (3.1) is called a prime inner factor (at \(\lambda \)).

Lemma 3.2. Let \(F \) be an inner factor, and let \(\det F \) have a zero of order at least \(m \) at \(z = -\bar{\lambda}. \) Then \(F \) can be factored in the form \(F = (\prod_{j=1}^m F_j)F_a \) for some inner factor \(F_a, \) where \(\{ F_j | j = 1, \ldots, m \} \) are prime inner factors (at \(\lambda \)).

Proof. We use induction. Take \(m = 1. \) Since \(\det F(-\bar{\lambda}) = 0, \) there exists a vector \(u (u \neq 0) \) such that \(F^*(-\bar{\lambda})u = 0. \) Let \(l \sim F. \) It follows from the equation

\[0 = \langle h_v(-\bar{\lambda}), F^*(-\bar{\lambda})u \rangle = \langle F(-\bar{\lambda})h_v(-\bar{\lambda}), u \rangle = \int_0^\infty (a_v, u)e^{-\bar{\lambda}x} \, dx \]

(where \(a_v \in l^1 \)) that \(ue^{\bar{\lambda}x} \subseteq l. \) Let \(l_1 = [ue^{\bar{\lambda}x}], \) so that \(l_1 \subseteq l. \) Then by Theorem B, we have \(F = F_1F_a, \) where \(F_1 \sim l_1. \) By virtue of Lemma 3.1, \(F_1 \) is a prime inner factor (at \(\lambda \)).

We now assume that the lemma is true for \(m = k, \) and consider the case \(m = k + 1. \) By our assumption we have \(F = (\prod_{j=1}^k F_j)F_a. \) Taking determinants, we have \(\det F = b^k(z) \cdot \det F_a. \) Since the order of the zero of \(b^k(z) \) at \(z = -\bar{\lambda} \) is \(k, \) we must have \(\det F_a(-\bar{\lambda}) = 0. \) Then,
as shown above, \(F_a = F_{k+1}F_b \) for some inner factor \(F_b \), where \(F_{k+1} \) is a prime inner factor (at \(\lambda \)).

Lemma 3.3. The space \(l = \{ux^{m-1}e^{i\lambda x} \mid u \in V \} \) corresponds to the inner factor \(F_b = b^m(z)I \).

Let \(l_1 = \{ux^{m-1}e^{i\lambda x} \mid u \in V \} \). It follows from the equation

\[
(F(z)h_v, u)^{(k)} = \int_0^\infty (a_v, u)(ix)^k e^{i\lambda x} \, dx,
\]

for \(a_v \in l_1^* \), and \(F = F_1 (\sim l_1) \), that \(F_1 \) has a zero of order at least \(m \) at \(z = -\lambda \). That is, \(F_1^{(k)}(-\lambda) = 0 \), \(k = 0, 1, \ldots, m - 1 \). Then we can factor \(F_1 \) in the form \(F_1 = c b^m(z)I \cdot F_c \), where \(F_c \) is an inner factor. We need only show that \(F_c \) is constant. Let \(h_b \sim F_b = b^m(z)I \). It is easy to see from equation (3.3), for \(\gamma_v = l_1^* \), and \(F = F_b \), that \(\gamma_v \) is constant. Let \(h_b \sim F_b = b^m(z)I \). It follows that \(F_c \) is a constant unitary operator.

Lemma 3.4. \(l (\sim F) \) consists of exponentials with exponent \(\lambda \) and is finite dimensional if and only if \(\det F = cb^m(z) \). Also, if \(\det F = cb^m(z) \), then \(\dim l = m \).

Let \(l \) consist of exponentials with exponent \(\lambda \), and let \(q - 1 \) be the order of the highest order exponential contained in \(l \). Let \(l_b = \{ux^{q-1}e^{i\lambda x} \mid u \in V \} \). Then \(l \subseteq l_b \). According to Lemma 3.3, \(b^q(z)I \sim l_b \).

By virtue of Theorem B, we have \(b^q(z)I = FF_a \) (where \(F \sim l \)). Taking determinants, we obtain \(b^{qn}(z) = \det F \cdot \det F_a \) (where \(n = \dim V \)). It follows from Theorem D that \(\det F \) is some power of \(cb(z) \).

Conversely, let \(\det F = cb^m(z) \). According to Lemma 3.2 we can factor \(F \) in the form

\[
F = \left(\prod_{j=1}^m F_j \right) F_a,
\]

where \(F_j \) is the prime inner factor \(P_j + b(z)Q_j \). By taking determinants of both sides of equation (3.4), we see that \(\det F_a = c \). Then by virtue of Lemma 1, \(F_a \) is a constant unitary operator. Let \(E_j = Q_j + b(z)P_j \) \((j = 1, \ldots, m) \). Clearly each \(E_j \) is an inner factor. Since

\[
\left(\prod_{j=1}^m F_j \right) F_a F_a^* \left(\prod_{j=0}^{m-1} E_{m-j} \right) = b^m(z)I,
\]

it follows from Theorem B that \(l \subseteq l_b \). It then follows from Lemma 3.3 that \(l \) consists of exponentials with exponent \(\lambda \).
Again, we assume that \(\det F = cb^m(z) \). We will show that \(\dim l = m \). As shown in the previous paragraph,
\[
I \left(\sim \prod_{j=1}^{m} F_j \right) \subseteq l_b \left(\sim b^m(z)I \right).
\]

According to Theorem B, we have \(b^m(z)I = \left(\prod_{j=1}^{m} F_j \right) F_a \). Taking determinants, we have \(b^m(z) = b^m(z) \cdot \det F_a(z) \), so that \(\det F_a(z) = b^m(z) \cdot \det F_a(z) \). By virtue of Lemma 3.2, \(F_a \) can be factored in the form \(F_a = \prod_{j=m+1}^{mn} F_j \). Let \(E_k = \prod_{j=1}^{k} F_j \) \((k \leq mn)\), and let \(l_n = l \) \((l_m = l, \text{and } l_{mn} = l_b)\). From Theorem B, we have \(l_{k-1} \subseteq l_k \). Since no \(F_j \) is constant, we have \(l_{k-1} \subseteq l_k \). By use of induction, we see that \(\dim l_k \geq k \), and also that \(\dim l_{p+k} \geq \dim l_p + k \), \((k + p \leq mn)\). If \(\dim l_k > k \) for some fixed \(k \), then \(\dim l_{mn} \geq \dim l_k + mn - k > mn \). But it follows from Lemma 3.3 that \(\dim l_b = mn \). Thus, by contradiction, \(\dim l_k = k \), \(k = 1, \ldots, mn \).

Proof of Lemma 2. Let \(l \) contain (exactly) \(m \) linearly independent exponentials with exponent \(\lambda \), and let \(l_\lambda \) be the span of these exponentials. From Theorem B, we have \(F = F_\lambda F_a \). Taking determinants of both sides, we have \(\det F = \det F_\lambda \cdot \det F_a \). According to Lemma 3.4, \(\det F_\lambda = cb^m(z) \), so that \(\det F \) has a zero of order at least \(m \) at \(z = -\lambda \).

Conversely, we assume that \(\det F \) has a zero of order \(m \) at \(z = -\lambda \). According to Lemma 3.2, \(F \) can be factored in the form \(F = \left(\prod_{j=1}^{m} F_j \right) F_a \) for prime \(F_j \)'s. Let \(l_m = \prod_{j=1}^{m} F_j \). Since \(\det \prod_{j=1}^{m} F_j = b^m(z) \), it follows from Lemma 3.4 that \(l_m \) contains \(m \) linearly independent exponentials with exponent \(\lambda \). Then by Theorem B, we have \(l_m \subseteq l \), which completes the proof.

Proof of Lemma 3. Let \(l \) contain an exponential \(p(x)e^{ikx} \) of order \(m \). Since \((T_\ast - e^{ikx})p(x)e^{ikx} \((\in l)\) is an exponential of order \(m - 1 \), we see that \(l \) contains at least \(m + 1 \) linearly independent exponentials with exponent \(\lambda \). By virtue of Lemma 2, \(\beta(z) \) has a zero of order at least \(m + 1 \), so that
\[
(\beta(-\lambda)I \cdot h_\ast(-\lambda),u)^{(k)} = 0, \quad \text{for } k = 0, \ldots, m.
\]

It then follows from equation (3.3) that all exponentials with exponent \(\lambda \) of order \(m \) or less are contained in \(l_\beta \).

Bibliography

Courant Institute of Mathematical Sciences, New York University