ON THE BOUNDARY BEHAVIOR OF BLASCHKE PRODUCTS IN THE UNIT DISK

PETER COLWELL¹

1. Introduction. Let A be any sequence of points in the unit disk D: $\{|z| < 1\}$ such that $\sum_{A} (1 - |a|) < \infty$. The Blaschke product with respect to A, given by $B(z; A) = \prod_{A} (|a|/a) (a-z)/(1-\bar{a}z)$, defines an analytic function in D such that |B(z; A)| < 1 for z in D. F. Riesz [7, p. 94] showed that for almost all points $e^{i\theta}$ of C: $\{|z| = 1\}$ the radial limit $B(e^{i\theta}) = \lim_{r \to 1} B(re^{i\theta}; A)$ exists and is of modulus one. For later reference we state the following result of D. Frostman [4, p. 170].

THEOREM 1. A necessary and sufficient condition that B(z; A) and all it subproducts have radial limits of modulus one at $e^{i\theta}$ is that

(1)
$$\sum_{A} \left[(1 - |a|) / |e^{i\theta} - a| \right] < \infty.$$

It is our purpose to consider the boundary behavior of Blaschke products possessing radial limits of modulus one at every point of *C*.

2. Because of condition (1), it is only at accumulation points of A that a Blaschke product B(z; A) can possibly fail to have a radial limit of modulus one. The following theorem gives the restrictions to be imposed on A', the derived set of A, in order that B(z; A) have radial limits of modulus one at every point of C.

THEOREM 2. Let E be a set on C. A necessary and sufficient condition that there exist a Blaschke product B(z; A) for which $B(e^{i\theta})$ is defined and of modulus one at every point of C and such that A' = E is that E be closed and nowhere dense on C.

Let E be a closed and nowhere dense set on C. We shall construct a sequence A in D with A' = E for which $\sum_A (1 - |a|) < \infty$ and for which (1) is satisfied at every point of C. Then, by Theorem 1, the corresponding Blaschke product B(z; A) will have radial limits of modulus one at every point of C.

Presented to the Society, April 10, 1965; received by the editors August 30, 1965.

¹ The work presented here was done while the author held a National Aeronautics and Space Administration Traineeship at the University of Minnesota, and it forms a part of the author's doctoral dissertation written under the direction of Professor D. A. Storvick.

The complement of E with respect to C is a countable union of disjoint open arcs on C. Let F be the set of end-points of these open arcs, where we write $F = \{c_m, d_m | m = 1, 2, 3, \dots, \}$, with $|c_m| = |d_m| = 1$, $\xi_m = \arg c_m < \arg d_m = \delta_m$ for each m. It is clear that F is a countable dense subset of E.

For each m, let $l_m = \delta_m - \xi_m$, and let a number t, 0 < t < 1, be chosen. Define k_m for each m to be the minimum of t and $l_m/2\pi$. For each m and $n = 1, 2, 3, \cdots$, we define the sequences $\{g_{mn}\}$ and $\{h_{mn}\}$ by $g_{mn} = \xi_m + (k_m)^n/2$, $h_{mn} = \delta_m - (k_m)^n/2$. For each fixed m, $\{g_{mn}\}$ is non-increasing in n, $\{h_{mn}\}$ is nondecreasing in n, while $\lim_{n\to\infty} g_{mn} = \xi_m$ and $\lim_{n\to\infty} h_{mn} = \delta_m$. For each m and n we let $r_{mn} = 1 - (k_m)^n/2^{m+n}$, and we let $A = \{a_{mn}, b_{mn} | m, n = 1, 2, 3, \cdots, \}$, where $a_{mn} = r_{mn} \exp(ig_{mn})$ and $b_{mn} = r_{mn} \exp(ih_{mn})$.

It may be seen that A' = E and $\sum_{A} (1 - |a|) < \infty$. For any point $e^{i\theta}$ of C - E, clearly (1) is satisfied. If $e^{i\theta}$ is a point of E, we see that $\theta \neq \arg a$ for each a in A. If we denote by $|\alpha - \beta|$ the length along C of the shorter arc from $e^{i\alpha}$ to $e^{i\beta}$, then $|\theta - \arg a| \neq 0$ for $e^{i\theta}$ in E and a in A. By a lemma of G. T. Cargo [2, p. 10], to show (1) is satisfied for $e^{i\theta}$ in E, it suffices to show that

(2)
$$\sum_{A} \left[(1 - |a|) / |\theta - \arg a| \right] < \infty.$$

However, for $e^{i\theta}$ in E we have $|\theta - \arg a_{mn}| \ge (k_m)^n/2$, $|\theta - \arg b_{mn}| \ge (k_m)^n/2$ for $m = 1, 2, 3, \dots, n = 1, 2, 3, \dots$, so that (2) will be satisfied for $e^{i\theta}$ in E.

Let B(z; A) be a Blaschke product with radial limits of modulus one at every point of C, and let E = A'.

Of course E is closed, but suppose E is not nowhere dense on C. Then there is some arc I on C in which E is dense. Write $I = \{e^{i\theta} | \alpha \leq \theta \leq \beta\}$, and let γ , $0 < \gamma < \pi$, be arbitrarily chosen. We denote by S_{θ} the Stolz angle in D at $e^{i\theta}$ with vertex angle γ symmetric about the radius to $e^{i\theta}$. In the region $\{re^{i\theta} | 0 < r < 1, \alpha < \theta < \beta\}$ we can select a point a_1 of A. If arg $a_1 = \phi_1$, we may choose α_{11} , α_{12} such that $\alpha \leq \alpha_{11} < \phi_1 < \alpha_{12} \leq \beta$ and such that a_1 is in S_{θ} for $\alpha_{11} < \theta < \alpha_{12}$. Now choose β_{11} , β_{12} such that $\alpha_{11} < \beta_{11} < \phi_1 < \beta_{12} < \alpha_{12}$, and let $J_1 = \{e^{i\theta} | \beta_{11} \leq \theta \leq \beta_{12}\}$. Clearly a_1 is in S_{θ} for every $e^{i\theta}$ in J_1 .

In the region $\{re^{i\theta} \mid |a_1| < r < 1, \beta_{11} < \theta < \beta_{12}\}$ we can select a point a_2 of A. If arg $a_2 = \phi_2$, we choose α_{21} , α_{22} such that $\beta_{11} \leq \alpha_{21} < \phi_2 < \alpha_{22} \leq \beta_{12}$ and such that a_2 is in S_{θ} for $\alpha_{21} < \theta < \alpha_{22}$. Now we choose β_{21} , β_{22} such that $\alpha_{21} < \beta_{21} < \phi_2 < \beta_{22} < \alpha_{22}$, and we let $J_2 = \{e^{i\theta} \mid \beta_{21} \leq \theta \leq \beta_{22}\}$. We see that $J_2 \subset J_1$, while a_1 and a_2 are both in S_{θ} for all $e^{i\theta}$ in J_2 .

Continuing in this fashion, we construct a sequence $\{J_j\}$ of closed

arcs on C such that $J_1 \supset J_2 \supset \cdots \supset J_j \supset \cdots$, and we select a sequence $\{a_j\}$ of points in A with $|a_1| < |a_2| < \cdots < |a_j| < \cdots < 1$ and such that for each value of j and for every $e^{i\theta}$ in J_j , a_k is in S_{θ} , $k = 1, 2, \dots, j$.

Now $\bigcap J_j$, where the intersection is taken over all values of j, is not empty, and we can find a point $e^{i\phi}$ of $\bigcap J_j$ which is an accumulation point of $\{a_j\}$. Also, for each value of j, a_j is in S_{ϕ} .

We connect the points of $\{a_j\}$ in order of increasing index by a polygonal path P(z) to $e^{i\phi}$ lying in S_{ϕ} . The limit of B(z;A) as z approaches $e^{i\phi}$ along P(z), if it exists, cannot be of modulus one, for $B(a_j;A)=0$ for $j=1,2,3,\cdots$. An application of a theorem of E. Lindelöf [5] shows that B(z;A) cannot then have a radial limit of modulus one at $e^{i\phi}$. From this contradiction we conclude that E must be nowhere dense on C.

The proof that E is necessarily nowhere dense on C, while cumbersome, uses only elementary techniques. By appealing to cluster set theory, a far more elegant proof is possible. The author is indebted to Professor K. Noshiro for the following alternative proof of the fact that E is nowhere dense on C.

Each point $e^{i\theta}$ of E is an accumulation point of the zeros of B(z;A) and thus is an essential singularity of B(z;A). By a theorem of W. Seidel [9, p. 211], the interior cluster set of B(z;A) at $e^{i\theta}$, $C(B,e^{i\theta})$, is the closed unit disk. However, by hypothesis B(z;A) possesses a radial limit at each point of C, so that radial cluster set for B(z;A) at $e^{i\theta}$, $C_r(B,e^{i\theta})$, is a single point.

Hence at each point $e^{i\theta}$ of E we have $C(B, e^{i\theta}) \neq C_r(B, e^{i\theta})$. By a theorem of E. F. Collingwood [3, p. 5], E must be a set of category I on C. Since E is closed, E is necessarily nowhere dense on C.

THEOREM 3. Let B(z; A) be a Blaschke product with $B(e^{i\theta})$ defined and of modulus one at every point of C. Then, as a function of θ , $B(e^{i\theta})$ is discontinuous at $\theta = \theta_0$ if, and only if, $e^{i\theta_0}$ is in A'.

If $e^{i\theta_0}$ is not a point of A', then a theorem of C. Tanaka [10, p. 410] states that B(z; A) is analytic throughout a neighborhood of $e^{i\theta_0}$. Throughout this neighborhood, $B(e^{i\theta}) = \lim_{r \to 1} B(re^{i\theta}; A) = B(e^{i\theta}; A)$, so that $B(e^{i\theta})$ is evidently continuous at $\theta = \theta_0$.

If $e^{i\theta_0}$ is a point of A', then $e^{i\theta_0}$ is a singularity of B(z;A). Consequently, as was proved by W. Seidel [9, p. 208], in each arc on C containing $e^{i\theta_0}$, $B(e^{i\theta})$ assumes every value of modulus one infinitely often. Then $B(e^{i\theta})$ is discontinuous at $\theta = \theta_0$.

From Theorems 2 and 3 follows immediately a corollary which is a special case of a theorem of A. J. Lohwater and G. Piranian [6, p. 5].

COROLLARY. Let B(z; A) be any Blaschke product for which $B(e^{i\theta})$ is defined and of modulus one at every point of C. In order that a set E on C be exactly the set of points where the radial limit function $B(e^{i\theta})$ is discontinuous, it is necessary and sufficient that E be closed and nowhere dense on C.

3. For a Blaschke product B(z; A) in D, the radial variation of B(z; A) at a point $e^{i\theta}$ of C is defined to be $V(B; \theta) = \int_0^1 \left| B'(re^{i\theta}; A) \right| dr$. The quantity $V(B; \theta)$ is the length of the image under B(z; A) of the radius to $e^{i\theta}$. G. T. Cargo [1, p. 425] proved that (1) is a necessary and sufficient condition for the radial variations of B(z; A) and all its subproducts at $e^{i\theta}$ to be uniformly bounded.

THEOREM 4. Let B(z; A) be a Blaschke product for which (1) holds at every point of C. Then, as a function of θ , $V(B; \theta)$ is a discontinuous at $\theta = \theta_0$ if, and only if, $e^{i\theta_0}$ is in A'.

Suppose $e^{i\theta_0}$ is not in A'. Then there is an open neighborhood N of $e^{i\theta_0}$ throughout which B(z;A) is analytic, [10, p. 410], and B(z;A) is analytic in $D \cup N$. Consequently, B'(z;A) is defined and continuous throughout $D \cup N$.

If d denotes the distance from $e^{i\theta_0}$ to the closest boundary point of N, let R be the closed region $\{re^{i\theta} | 0 \le r \le 1, |e^{i\theta} - e^{i\theta_0}| \le d/2\}$. Now $R \subset D \cup N$, and B'(z; A) is uniformly continuous on R. Given any $\epsilon > 0$ there exists $\delta > 0$ such that for all r, $0 \le r \le 1$, $|B'(re^{i\theta}; A) - B'(re^{i\theta_0}; A)| < \epsilon$ when $|\theta - \theta_0| < \delta$.

Then for all θ , $|\theta - \theta_0| < \delta$, we have

$$|V(B;\theta) - V(B;\theta_0)| = \left| \int_0^1 |B'(re^{i\theta};A)| dr - \int_0^1 |B'(re^{i\theta_0};A)| dr \right|$$

$$\leq \int_0^1 |B'(re^{i\theta};A) - B'(re^{i\theta_0};A)| dr < \epsilon,$$

so that $V(B; \theta)$ is continuous at $\theta = \theta_0$.

Suppose $e^{i\theta_0}$ is in A' while $V(B;\theta)$ is continuous at $\theta = \theta_0$. We may select a subsequence $\{r_k \exp(i\phi_k) \mid k=1, 2, 3, \cdots\}$ from A such that $r_k \leq r_{k+1}$ and $|\phi_k - \theta_0| \geq |\phi_{k+1} - \theta_0|$ for $k=1, 2, 3, \cdots$, $\lim_{k \to \infty} r_k \exp(i\phi_k) = e^{i\theta_0}$, and $\lim_{k \to \infty} V(B;\phi_k) = V(B;\theta_0)$.

Let s, 0 < s < 1, be arbitrarily chosen, and let k(s) be a positive integer such that $r_k \ge s$ when $k \ge k(s)$. Since for each value of k, $B[r_k \exp(i\phi_k); A] = 0$ while $|B[\exp(i\phi_k)]| = 1$ by Theorem 1, we see that for $k \ge k(s)$, $\int_s^1 |B'[r \exp(i\phi_k); A]| dr \ge 1$.

Thus for $k \ge k(s)$ we have $V(B; \phi_k) = \int_0^1 |B'[r \exp(i\phi_k); A]| dr$ $\ge \int_0^s |B'[r \exp(i\phi_k); A]| dr + 1$. Now B'(z; A) is uniformly continuous on the compact subset $\{|z| \leq s\}$ of D, while for any r, $0 \leq r \leq s$, we have $\lim_{k\to\infty} |B'[r \exp(i\phi_k); A]| = |B'(re^{i\theta_0}; A)|$. Consequently, $\lim_{k\to\infty} \int_0^s |B'[r \exp(i\phi_k); A]| dr = \int_0^s \{\lim_{k\to\infty} |B'[r \exp(i\phi_k); A]|\} dr = \int_0^s |B'(re^{i\theta_0}; A)| dr$, and $V(B; \theta_0) = \lim_{k\to\infty} V(B; \phi_k) \geq \int_0^s |B'(re^{i\theta_0}; A)| dr + 1$, where 0 < s < 1.

Since (1) holds for $e^{i\theta_0}$, $V(B; \theta_0) < \infty$, and $\lim_{s\to 1} \int_0^s |B'(\operatorname{re}^{i\theta_0}; A)| dr = V(B; \theta_0)$, so that $V(B; \theta_0) \ge V(B; \theta_0) + 1$. We conclude that if $e^{i\theta_0}$ is in A', then $V(B; \theta)$ is discontinuous at $\theta = \theta_0$.

We remark here that since $V(B;\theta)$ is a lower semicontinuous function of θ on $[0, 2\pi]$ (cf. [8, p. 235], Theorem 3 implies that $V(B;\theta)$ cannot have a relative maximum at $\theta = \theta_0$ if $e^{i\theta_0}$ is in A'.

4. It is known, [4, p. 177], that if a Blaschke product B(z; A) satisfies

(3)
$$\sum_{A} \left[(1 - \mid a \mid) / \mid e^{i\theta} - a \mid^{2} \right] < \infty$$

at a point $e^{i\theta}$ of C, then the derivative of $B(\mathbf{z}; A)$ has a finite radial limit at $e^{i\theta}$ given by

$$B'(e^{i\theta}) = \lim_{r \to 1} B'(re^{i\theta}; A) = B(e^{i\theta})e^{-i\theta} \sum_{A} [(1 - |a|^2)/|e^{i\theta} - a|^2],$$

where $B(e^{i\theta}) = \lim_{r \to 1} B(re^{i\theta}; A)$.

At any point $e^{i\theta}$ of C where (3) holds, (1) also holds, and a slight modification of the proof of Theorem 2 justifies

Theorem 5. A necessary and sufficient condition that a set E on C be the set of accumulation points of the zeros of a Blaschke product B(z; A) whose derivative has a finite radial limit at every point of C is that E be closed and nowhere dense on C.

THEOREM 6. Let B(z; A) be a Blaschke product for which (3) holds at every point of C. As a function of θ , $B'(e^{i\theta})$ is discontinuous at $\theta = \theta_0$ if, and only if, $e^{i\theta_0}$ is in A'.

Let $M(\theta) = \sum_{A} \left[(1 - |a|^2) / |e^{i\theta} - a|^2 \right]$ for each θ ; we note that for each value of θ each summand of $M(\theta)$ is a continuous function of θ .

Suppose $e^{i\theta_0}$ is not a point of A'. Then for some $\delta > 0$, $\left| e^{i\theta_0} - a \right| \ge \delta$ for all points a of A, and for each point $e^{i\theta}$ of $C \cap \{z \mid \left| e^{i\theta_0} - z \right| \le \delta/2 \}$, we have $\left| e^{i\theta} - a \right| \ge \delta/2$ and $M(\theta) \le (8/\delta^2) \sum_A (1 - \left| a \right|)$. Thus $M(\theta)$ converges uniformly to a continuous function of θ in $\{\theta \mid \left| e^{i\theta} - e^{i\theta_0} \right| \le \delta/2 \}$.

By Theorem 2, $B(e^{i\theta})$ is continuous at $\theta = \theta_0$, so $B'(e^{i\theta}) = B(e^{i\theta}) \cdot e^{-i\theta}$, $M(\theta)$ is continuous at $\theta = \theta_0$.

Suppose now that $e^{i\theta_0}$ is in A' and $B'(e^{i\theta})$ is continuous at $\theta = \theta_0$. We see that $M(\theta)$ is real-valued, and $M(\theta) \ge (1/4) \sum_A (1 - |a|)$. Further, since (3) holds, $|B(e^{i\theta})| = 1$ for all θ , and $|M(\theta) - M(\theta_0)| \le |B'(e^{i\theta}) - B'(e^{i\theta_0})|$. The continuity of $B'(e^{i\theta})$ at $\theta = \theta_0$ implies that of $M(\theta)$ at $\theta = \theta_0$.

But then $B(e^{i\theta}) = [e^{i\theta}B'(e^{i\theta})]/M(\theta)$ is also continuous at $\theta = \theta_0$, and this contradicts Theorem 2. Thus $B'(e^{i\theta})$ is discontinuous at $\theta = \theta_0$ if $e^{i\theta_0}$ is in A'.

BIBLIOGRAPHY

- 1. G. T. Cargo, The radial images of Blaschke products, J. London Math. Soc. 36 (1961), 424-430.
- 2. —, The boundary behavior of Blaschke products, J. Math. Anal. Appl. 5 (1962), 1-16.
- 3. E. F. Collingwood, Cluster sets and prime ends, Ann. Acad. Sci. Fenn. A. I. No. 250 (1958), 13 pp.
- 4. O. Frostman, Sur les produits de Blaschke, Kungl. Fysiogr. Sallsk. i Lund Forh. 12 (1942), 169-181.
- 5. E. Lindelöf, Sur un principe général de l'analyse et ses applications à la théorie de la représentation conforme, Acta Soc. Sci. Fenn. 46 (1915), 1-35.
- 6. A. J. Lohwater and G. Piranian, The boundary behavior of functions analytic in a disk, Ann. Acad. Sci. Fenn. A. I. No. 239 (1957), 17 pp.
- 7. F. Riesz, Über die Randwerte einer analytischen Funktionen, Math. Z. 18 (1923), 87-95.
- 8. W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235-242.
- 9. W. Siedel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc. 36 (1934), 201-226.
- 10. C. Tanaka, Boundary convergence of Blaschke products in the unit-circle, Proc. Japan Acad. 39 (1963), 410-412.

University of Minnesota and Iowa State University