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1. Introduction. Let A be any sequence of points in the unit disk

D: [\z\ <l} such that zZa (1 —|a|)<«>. The Blaschke product

with respect to A, given by Biz; A) = Y[A i\a\/a) (a — z)/(l — dz),

defines an analytic function in D such that |5(z; A)\ <1 for z in D.

F. Riesz [7, p. 94] showed that for almost all points eie of C: [\z\ = 1}

the radial limit Bieie) =limr,i Bireie; A) exists and is of modulus one.

For later reference we state the following result of O. Frostman

[4, p. 170].

Theorem 1. A necessary and sufficient condition that Biz; A) and all

it subproducts have radial limits of modulus one at eie is that

(1) Z[(l" \a\)/\e«-a\]< =0.
A

It is our purpose to consider the boundary behavior of Blaschke

products possessing radial limits of modulus one at every point of C.

2. Because of condition (1), it is only at accumulation points of A

that a Blaschke product Biz; A) can possibly fail to have a radial

limit of modulus one. The following theorem gives the restrictions to

be imposed on A', the derived set of A, in order that Biz; A) have

radial limits of modulus one at every point of C.

Theorem 2. Let E be a set on C. A necessary and sufficient condition

that there exist a Blaschke product Biz; A) for which Bieie) is defined

and of modulus one at every point of C and such that A' =E is that E be

closed and nowhere dense on C.

Let £ be a closed and nowhere dense set on C. We shall construct

a sequence A in D with A' — E for which Z^ (1 — M) < °° and for

which (1) is satisfied at every point of C. Then, by Theorem 1, the

corresponding Blaschke product 5(z; A) will have radial limits of

modulus one at every point of C.
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The complement of E with respect to C is a countable union of

disjoint open arcs on C. Let F be the set of end-points of these open

arcs, where we write F= {cm, dm\ m = l, 2, 3, ■ ■ ■ ,}, with \cm\ = \dm\

= 1, £m = arg cm <arg dm — hm for each m. It is clear that F is a count-

able dense subset of E.

For each m, let lm = bm — £m, and let a number /, 0</<l, be chosen.

Define km for each m to be the minimum of / and lm/2w. For each m

and » = 1, 2, 3, • • • , we define the sequences {gmn} and {hmn} by

gro» = ?m + (fem)"/2. !>.> = om — (km)n/2. For each fixed m, {gmn} is non-

increasing in m, {fcmn} is nondecreasing in n, while lining gOT» =£»> and

limn^M hmn = 8m. For each m and w we let rmn = 1 — (km)n/2m+n, and we

let 4 = {omn, 6mn|m, w = l, 2, 3, • • •,}, where amn=rmn exp (igm») and

Omn = ''mn eXp(^rtmn).

It may be seen that A' =E and Y* (1— I a\) < °° • F°r anY point
ew of C—E, clearly (1) is satisfied. If ev is a point of £, we see that

09*arg a for each ain A. If we denote by \a —/3| the length along C

of the shorter arc from eia to ei,s, then \6 — arg a| 5^0 for eiS in £ and

a in A. By a lemma of G. T. Cargo [2, p. 10], to show (1) is satisfied

for ew in E, it suffices to show that

(2) E[(l- |a|)/|»-arga|]< oo.
A

However, for eie in E we have |0 — arg amn\ ^(km)n/2, \0 — arg &m„|

^(km)n/2 for w = l, 2, 3, • • • , n = l, 2, 3, ■ ■ ■ , so that (2) will be

satisfied for ew in E.

Let B(z; A) be a Blaschke product with radial limits of modulus

one at every point of C, and let E = A'.

Of course E is closed, but suppose E is not nowhere dense on C.

Then there is some arc 7 on C in which E is dense. Write /= {eiB\ a

= 0^)3}, and let 7, 0<7<7r, be arbitrarily chosen. We denote by Sg

the Stolz angle in D at eis with vertex angle 7 symmetric about the

radius to eie. In the region {rew\ 0<r<l, a<d<(3} we can select a

point ai of A. If arg ai=<pi, we may choose an, ai2 such that a^an

<cpi <ai2 ^/3 and such that ai is in Se for an <9 <ai2. Now choose /3n,

/3i2 such that an</3n<^i</3i2<ai2, and let Ji= {eis\^n^6^i2}.

Clearly ai is in Se for every ea in Ji.

In the region {rew| \ai \ <r <l,j3n<0</3i2} we can select a point a2

of A. If arg a2=<j>2, we choose a2i, a22 such that 0n^a2i<(p2<a22^^i2

and such that a2 is in 5« for a2i<0<a22. Now we choose j32i, j322 such

that a2i<|62i<02<j322<a22, and we let J2= {ei9\02i^6^^22}. We see

that J2EJi, while ai and a2 are both in 56 for all e* in J2.

Continuing in this fashion, we construct a sequence {Jj} of closed
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arcs on C such that J1DJ1Z) • • • Z/)J/D ■ • - , and we select a se-

quence {ay} of points in A with | ax | < | a2 | < • • • < | Oy | < • ■ • < 1

and such that for each value of j and for every eie in Jj, ak is in Se,

k = l,2, ■ ■ ■ ,j.
Now C\Jj, where the intersection is taken over all values of j, is not

empty, and we can find a point e** of D/y which is an accumulation

point of {aj}. Also, for each value of j, aj is in S4,.

We connect the points of {a,} in order of increasing index by a

polygonal path Piz) to e** lying in S*. The limit of 5(z; A) as z ap-

proaches e!* along Piz), if it exists, cannot be of modulus one, for

5(oy; A)=0 for j=l, 2, 3, • • • . An application of a theorem of E.

Lindelof [5] shows that Biz; A) cannot then have a radial limit of

modulus one at e'*. From this contradiction we conclude that E must

be nowhere dense on C.

The proof that E is necessarily nowhere dense on C, while cumber-

some, uses only elementary techniques. By appealing to cluster set

theory, a far more elegant proof is possible. The author is indebted

to Professor K. Noshiro for the following alternative proof of the

fact that E is nowhere dense on C.

Each point eie of E is an accumulation point of the zeros of 5(z; A)

and thus is an essential singularity of Biz; A). By a theorem of

W.Seidel [9, p. 211], the interior cluster set of 5(z; A) ate*", C(5,eifl),

is the closed unit disk. However, by hypothesis 5(z; A) possesses a

radial limit at each point of C, so that radial cluster set for Biz; A)

at eie, CriB, eie), is a single point.

Hence at each point eie of E we have CiB, em)^CriB, eie). By a

theorem of E. F. Collingwood [3, p. 5], E must be a set of category I

on C. Since E is closed, E is necessarily nowhere dense on C.

Theorem 3. Let Biz; A) be a Blaschke product with Bie'6) defined

and of modulus one at every point of C. Then, as a function of 6, Bie'e)

is discontinuous at d = 6Q if, and only if, eie° is in A'.

If eie" is not a point of A', then a theorem of C. Tanaka [10, p. 410]

states that Biz; A) is analytic throughout a neighborhood of eie°.

Throughout this neighborhood, Bieie) =limr_i Bireie; A) =Bieie; A),

so that Bieie) is evidently continuous at 0=0o-

If em is a point of A', then eiH is a singularity of Biz; A). Conse-

quently, as was proved by W. Seidel [9, p. 208], in each arc on C

containing eie", Bieis) assumes every value of modulus one infinitely

often. Then Bieie) is discontinuous at 6=00.

From Theorems 2 and 3 follows immediately a corollary which is a

special case of a theorem of A. J. Lohwater and G. Piranian [6, p. 5].
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Corollary. Let B(z; A) be any Blaschke product for which B(ew) is

defined and of modulus one at every point of C. In order that a set E on

C be exactly the set of points where the radial limit function B(eie) is

discontinuous, it is necessary and sufficient that E be closed and nowhere

dense on C.

3. For a Blaschke product B(z; A) in D, the radial variation of

B(z;A) at a point em of Cis defined to be V(B;8)=f10 \B'(reu; A) \dr.

The quantity V(B; 0) is the length of the image under B(z; A) of the

radius to eie. G. T. Cargo [l, p. 425] proved that (1) is a necessary

and sufficient condition for the radial variations of B(z; A) and all

its subproducts at ew to be uniformly bounded.

Theorem 4. Let B(z; A) be a Blaschke product for which (1) holds

at every point of C. Then, as a function of 6, V(B; 0) is a discontinuous

at 9=6'o if, and only if, eiH is in A'.

Suppose ei9° is not in A'. Then there is an open neighborhood N of

ei9° throughout which B(z; A) is analytic, [10, p. 410], and B(z; A) is

analytic in DKJN. Consequently, B'(z; A) is defined and continuous

throughout D\JN.

If d denotes the distance from eie" to the closest boundary point of

N, let R be the closed region {reie\ Ogrgl, \eis — eiB"\ ̂ d/2}. Now

RED\JN, and B'(z; A) is uniformly continuous on R. Given any

e>0 there exists S>0 such that for all r, Ogr^l, \B'(reie; A)

-B'(re^;A)\ <e when |0-0O| <o.

Then for all 0, |0— 0O| <5, we have

| V(B;6) - V(B;6o)\   =    f   | B'(reiB; A) \ dr -  \    \ B'(re^; A) \ dr
I " o J o

^  I    | B'(reie; A) - B'(reie<>; A) \ dr < e,
J o

so that V(B; 0) is continuous at 0=0O.

Suppose eie° is in A' while V(B; 0) is continuous at 0=0o. We may

select a subsequence {rk exp(id>k) | fe = 1, 2, 3, • • • } from A such that

rk^rk+i and \<pk—9o\^\<pk+i—00\ for k — 1, 2, 3, • ■ • , lim*^ rk

exp(uj>k) =e«», and lim^. V(B;<pk) = V(B; 0O).

Let s, 0<s<l, be arbitrarily chosen, and let k(s) be a positive in-

teger such that rk^s when k^k(s). Since for each value of k,

B[rk exp(id)k); ^4]=0 while |F[exp(^)]| =1 by Theorem 1, we see

that for k^k(s), J\ \B'[r exp(i<pk); A]| dr^ 1.

Thus for k^k(s) we have V(B; <pk)=fo \B'[r exp(^); A]\dr

= /o | B' [r exp(i<pk); A ] | dr + l. Now B'(z; A) is uniformly continuous
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on the compact subset { \z\ 5Ss] of D, while for any r, O^r^s, we

have lim/i^ \B'[r expii(pk); A ] | = | B'ireiH; A)\. Consequently,

limfc^ /o | B' [r exp(t0A); A ] | dr =j'0 {lim^„ | B' [r exp(^); A ] \ } dr

=/„ | B'ire^;A) \ dr, and 7(5; 0») =limt,0O 7(5;^) ^fs0 \ B\re**; A) \
dr + l, where 0<s< 1.

Since (1) holds for ei$", 7(3; 0O) < oo , and lims<i fs0 \ 3'(rei9°; A) \dr

= 7(3; 0„), so that 7(5; 0„) ̂  7(3; 0O) + 1. We conclude that if eis°

is in A', then 7(3; 0) is discontinuous at 6=90.

We remark here that since ViB; 0) is a lower semicontinuous func-

tion of 0 on [0, 2tt] (cf. [8, p. 235], Theorem 3 implies that ViB; 0)

cannot have a relative maximum at 0=0O if eie° is in A'.

4. It is known, [4, p. 177], that if a Blaschke product Biz; A)
satisfies

(3) Z [(1- | «| )/\ea -a\2] < oo
A

at a point eiB of C, then the derivative of Biz; A) has a finite radial

limit at eiB given by

B'ieie) =   lim B'ireie; A) = Biei6)e-iezZ[il ~ \a |2)/ \eie - a \2],
l-»l A

where B(eis) =linw Bireie; A).

At any point eie oi C where (3) holds, (1) also holds, and a slight

modification of the proof of Theorem 2 justifies

Theorem 5. A necessary and sufficient condition that a set E on C

be the set of accumulation points of the zeros of a Blaschke product

Biz; A) whose derivative has a finite radial limit at every point of C is

that E be closed and nowhere dense on C.

Theorem 6. Let Biz; A) be a Blaschke product for which (3) holds

at every point of C. As a function of 6, 3'(eie) is discontinuous at 0 = 0O

if, and only if, eie" is in A'.

Let Mi6)= zZa [il-\a\2)/\ea-a\2] ior each 0; we note that for

each value of 0 each summand of M(0) is a continuous function of 8.

Suppose ei9° is not a point of A'. Then for some 5>0, \ei6° — a\ 2^5

for all points a of A, and for each point eie of CC\ \z \ eie" — z\ ^5/2},

we have \ew-a\ g;5/2 and M"(0) ̂ (8/52) zZa (1- a\). Thus M(6)

converges uniformly to a continuous function of 0 in {0| \eie — eie"\

^5/2}.
By Theorem 2, B(eie) is continuous at 0 = 0O, so B'(eie) =B(ei6)

■e~i%, M(9) is continuous at 0 = 0O.
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Suppose now that eiH is in A' and B'(eiS) is continuous at 0 =0O. We

see that M(B) is real-valued, and M(6) ^ (1/4) Ya (1 - | a\). Further,

since (3) holds, \B(eie)\ =1 for all 0, and \M(d)-M(60)\ ^\B'(eie)

-B'(eie")\. The continuity of B'(ei9) at 0=0O implies that of M(ff)

at 0=0o.
But then B(eie) = [ewB'(eie)]/M(6) is also continuous at 0=0O, and

this contradicts Theorem 2. Thus B'(ev) is discontinuous at 0=0O if

eie° is in A'.
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