Čebyšev subspaces of finite dimension in $L_{1}$
HTML articles powered by AMS MathViewer
- by R. R. Phelps
- Proc. Amer. Math. Soc. 17 (1966), 646-652
- DOI: https://doi.org/10.1090/S0002-9939-1966-0194882-9
- PDF | Request permission
References
- N. I. Aheizer and M. Krein, Some questions in the theory of moments, Translations of Mathematical Monographs, Vol. 2, American Mathematical Society, Providence, R.I., 1962. Translated by W. Fleming and D. Prill. MR 0167806, DOI 10.1090/mmono/002
- A. L. Garkavi, On best approximation by the elements of infinite-dimensional subspaces of a certain class, Mat. Sb. (N.S.) 62 (104) (1963), 104–120 (Russian). MR 0156144
- A. L. Garkavi, Approximation properties of subspaces of finite defect in the space of continuous functions, Dokl. Akad. Nauk SSSR 155 (1964), 513–516 (Russian). MR 0160106
- A. L. Garkavi, On the uniqueness of the $L$-problem of moments, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 553–570 (Russian). MR 0164226
- A. L. Garkavi, On Chebyshev and almost-Chebyshev subspaces, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 799–818 (Russian). MR 0165351
- Alfred Haar, Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Math. Ann. 78 (1917), no. 1, 294–311 (German). MR 1511900, DOI 10.1007/BF01457106
- Paul R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416–421. MR 24963, DOI 10.1090/S0002-9904-1948-09020-6 A. A. Liapunov, On completely additive vector-functions, Izv. Akad. Nauk SSSR 4 (1940), 465-478. (Russian. French summary)
- R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238–255. MR 113125, DOI 10.1090/S0002-9947-1960-0113125-4
- R. R. Phelps, Čebyšev subspaces of finite codimension in $C(X)$, Pacific J. Math. 13 (1963), 647–655. MR 156137, DOI 10.2140/pjm.1963.13.647
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 646-652
- MSC: Primary 46.35; Secondary 41.00
- DOI: https://doi.org/10.1090/S0002-9939-1966-0194882-9
- MathSciNet review: 0194882