The differential ideal $[uv]$
HTML articles powered by AMS MathViewer
- by Kathleen B. O’Keefe and Edward S. O’Keefe
- Proc. Amer. Math. Soc. 17 (1966), 750-756
- DOI: https://doi.org/10.1090/S0002-9939-1966-0197459-4
- PDF | Request permission
References
- Joseph Fels Ritt, Differential Algebra, American Mathematical Society Colloquium Publications, Vol. XXXIII, American Mathematical Society, New York, N. Y., 1950. MR 0035763, DOI 10.1090/coll/033
- Howard Levi, On the structure of differential polynomials and on their theory of ideals, Trans. Amer. Math. Soc. 51 (1942), 532–568. MR 6163, DOI 10.1090/S0002-9947-1942-0006163-2
- D. G. Mead, Differential ideals, Proc. Amer. Math. Soc. 6 (1955), 420–432. MR 71417, DOI 10.1090/S0002-9939-1955-0071417-5
- D. G. Mead, A note on the ideal $[uv]$, Proc. Amer. Math. Soc. 14 (1963), 607–608. MR 153674, DOI 10.1090/S0002-9939-1963-0153674-4
- Kathleen B. O’Keefe, A property of the differential ideal $y^{p}$, Trans. Amer. Math. Soc. 94 (1960), 483–497. MR 113880, DOI 10.1090/S0002-9947-1960-0113880-3
- Kathleen B. O’Keefe, A symmetry theorem for the differential ideal $[uv]$, Proc. Amer. Math. Soc. 12 (1961), 654–657. MR 130249, DOI 10.1090/S0002-9939-1961-0130249-2 —, On a problem of J. F. Ritt, Pacific Math. J. (to appear).
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 750-756
- MSC: Primary 12.80
- DOI: https://doi.org/10.1090/S0002-9939-1966-0197459-4
- MathSciNet review: 0197459