

THE UNIVERSITY OF BRITISH COLUMBIA

q-ANALOGUES OF CAUCHY’S FORMULAS

WALEED A. AL-SALAM

1. Let q be a given number and let α be real or complex. The αth “basic number” is defined by means of $\lfloor \alpha \rfloor = (1-q^\alpha)/(1-q)$. This has served as a basis for an extensive amount of literature in mathematics under such titles as Heine, basic, or q-series and functions. The basic numbers also occur naturally in many theta identities. The works of Jackson (for bibliography see [2]) and Hahn [3] have stimulated much interest in this field.

One important operation that is intimately connected with basic series as well as with difference and other functional equations is the q-derivative of a function f. This is defined by

$$Df(x) = \frac{f(qx) - f(x)}{x(q - 1)}.$$

Jackson defined the operations, which he called q-integration,

$$\int_0^x f(t) d(q, t) = x(1-q) \sum_{k=0}^{\infty} q^k f(xq^k)$$

and

$$\int_x^{\infty} f(t) d(q, t) = x(1-q) \sum_{k=0}^{\infty} q^{-k} f(xq^{-k})$$

Received by the editors October 28, 1965 and, in revised form, November 30, 1965.
provided the series on the right hand side are convergent. Both (1.2) and (1.3) are inverse operations to (1.1) and are analogues of the definite integrals \(\int_0^x f(t) \, dt \) and \(\int_x^a f(t) \, dt \) respectively. In fact each approach the respective integral as \(q \to 1 \) when \(f \) is Riemann integrable in the intervals of integration.

The definite \(q \)-integral \(\int_a^x f(t) \, dq(t) \) is defined by means of

\[
(1.4) \quad \int_a^x f(t) \, dq(t) = \int_0^x f(t) \, dq(t) - \int_0^a f(t) \, dq(t).
\]

The purpose of this note is to obtain \(q \)-analogues of Cauchy’s formulas for multiple integrals

\[
(1.5) \quad \int_a^x \int_a^{x_n-1} \cdots \int_a^{x_1} f(t) \, dt \, dx_1 \cdots dx_{n-1} = \frac{1}{(n-1)!} \int_a^x (x - t)^{n-1} f(t) \, dt
\]

and

\[
(1.6) \quad \int_x^\infty \int_x^{x_n-1} \cdots \int_x^{x_1} f(t) \, dt \, dx_1 \cdots dx_{n-1} = \frac{1}{(n-1)!} \int_x^\infty (t - x)^{n-1} f(t) \, dt.
\]

The \(q \)-analogues of (1.4) and (1.5) are given in Theorems 1 and 2 below. We remark that (3.1) and (3.2) can be regarded as transformations of \(n \)-fold infinite series to a single infinite series. These are basically different from a finite analogue of (1.5) that has been recently given by Traub [4]. We further note that (3.1) and (3.2) can be used to define fractional \(q \)-integral and \(q \)-derivative in the same way that (1.4) and (1.5) have been used to define fractional integrals and derivative. This we shall give elsewhere.

2. Let for a nonnegative integer \(n \), \([0]! = 1, [n]! = [n][n-1] \cdots [1]\) if \(n > 0 \), and let further, \(0 < q < 1 \) and

\[
(a + b)_0 = 1, \quad (a + b)_n = (a + b)(a + bq) \cdots (a + bq^{n-1}) \quad \text{if} \quad n > 0.
\]

We shall also use the notation

\[
(a)_0 = 1, \quad (a)_n = (1 - a)(1 - aq) \cdots (1 - aq^{n-1}) \quad \text{if} \quad n > 0,
\]

and
We first give the following lemmas:

Lemma 1. For integers \(n \geq 1 \) and \(m \geq 0 \) we have

\[
A_m = \sum_{j=0}^{m} q^j(q^j - q^{m+1})_{n-1} = \frac{(q^{m+1})_n}{1 - q^n}.
\]

Proof. We have

\[
\sum_{m=0}^{\infty} A_m u^m = \sum_{m=0}^{\infty} u^m \sum_{j=0}^{\infty} q^j(q^j - q^{m+1})_{n-1}
\]

\[
= \sum_{j=0}^{\infty} u^j q^n \sum_{m=0}^{\infty} (q^{m+1})_{n-1} u^m
\]

\[
= \frac{1}{1 - uq^n} \sum_{m=0}^{\infty} \frac{(q)_{m+1} (q)_m}{(q)_m} u^m,
\]

so we have

\[
\sum_{m=0}^{\infty} A_m u^m = \frac{(q)_{n-1}}{1 - uq^n} \sum_{m=0}^{\infty} \frac{(q^n)_m}{(q)_m} u^m.
\]

Let us recall the formula [1, p. 66]

\[
\sum_{k=0}^{\infty} \frac{(a)_k}{(q)_k} u^k = \prod_{r=0}^{\infty} \frac{1 - auq^r}{1 - uq^r},
\]

so that (2.2) can now be written as

\[
\sum_{m=0}^{\infty} A_m u^m = \frac{(q)_{n-1}}{1 - uq^n} \prod_{r=0}^{\infty} \frac{1 - uq^{r+n}}{1 - uq^r}
\]

\[
= (q)_{n-1} \prod_{r=0}^{\infty} \frac{1 - uq^{n+r+1}}{1 - uq^r} = (q)_{n-1} \sum_{k=0}^{\infty} \frac{(q^{n+1})_k}{(q)_k} u^k.
\]

Equating coefficients of \(u^m \) we get (2.1).

Lemma 2. For integral \(m \geq 1 \) we have

\[
\sum_{j=1}^{m} q^{-j}(q^{-m-1} - q^{-j})_{n-1} = \frac{q^{-n(m+1)+1}}{1 - q^n} (q^m)_n.
\]

The proof of this lemma is similar to that of Lemma 1.
Lemma 3. For nonnegative integer \(n \),

\[
a^{n+1}(1 - q^n) \sum_{j=0}^{\infty} q^j(q^j - q^{k+1})_{n-1}
\]

(2.4)

\[
- ax(1 - q^n) \sum_{j=1}^{\infty} q^j(xq^j - aq^{k+1})_{n-1} = a^{n+1}(q^{k+1})_n
\]

\[
= - a(x - aq^{k+1})_n.
\]

Proof. To prove this lemma we recall the identity due to Euler

(2.5)

\[
(a + b)_n = \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} q^{r(r-1)/2} a^{n-r} b^r,
\]

so that

\[
\sum_{j=0}^{\infty} q^j(q^j - q^{k+1})_{n-1} = \sum_{r=0}^{n-1} (-1)^{r} \binom{n-1}{r} q^{r(r-1)/2} \frac{q^{r(k+1)}}{1 - q^{n-r}}.
\]

Hence we get

\[
a^{n+1}(1 - q^n) \sum_{j=0}^{\infty} q^j(q^j - q^{k+1})_{n-1}
\]

(2.6)

\[
= a^{n+1} \sum_{r=0}^{n-1} (-1)^{r} \binom{n-1}{r} q^{r(r-1)/2} q^{r(k+1)}
\]

\[
= a^{n+1}(1 - q^{k+1})_n - (-1)^n q^n(n-1)/2 + n(k+1).
\]

Similarly

\[
a x(1 - q^n) \sum_{j=0}^{\infty} q^j(xq^j - aq^{k+1})_{n-1}
\]

(2.7)

\[
= a[(x - aq^{k+1})_n - (-1)^n q^{(1/2)n(n-1)+n(k+1)} a^n].
\]

Substituting (2.6) and (2.7) in the left hand side of (2.4) we get the right hand side of (2.4).

3. We now prove our main results.

Theorem 1. If \(n \geq 1 \) is a given integer

\[
I^n f(x) = \int_{a}^{x} \int_{a}^{x_{n-1}} \cdots \int_{a}^{x_1} f(t) d(q, t)d(q, x_1) \cdots d(q, x_{n-1})
\]

(3.1)

\[
= \frac{1}{[n - 1]!} \int_{a}^{x} (x - qt)_{n-1} f(t) d(q, t),
\]
and

Theorem 2. If \(n \geq 1 \) is an integer

\[
K^nf(x) = \int_a^\infty \cdots \int_{x_{n-1}}^\infty f(t)d(q, t)d(q, x_1) \cdots d(q, x_{n-1})
\]
(3.2)

\[
= \frac{q^{-(1/2)n(n-1)}}{[n-1]!} \int_a^\infty (t-x)^{n-1}f(tq^{1-n})d(q, t).
\]

Both of these theorems can be proved by induction. We give the proof of the first as the proof of the second is similar. To prove Theorem 1 assume (3.1) is true for \(n = N \). We have

\[
I^{N+1}f(x) = \frac{1-q}{[N-1]!} \int_a^\infty \sum_{k=0}^\infty q^k \{ t(t - tq^{k+1})_{N-1}f(tq^k) - a(t - aq^{k+1})_{N-1}f(aq^k) \} d(q, t)
\]

\[
= \frac{(1-q)^2}{[N-1]!} \sum_{k=0}^\infty \sum_{j=0}^\infty q^{k+j}(1 - q^{k+1})_{N-1}\left\{ x^{N+1}q^{N+1}f(xq^{k+j}) - a^{N+1}q^{N+1}f(aq^{k+j}) \right\}
\]

\[
- \frac{(1-q)^2}{[N-1]} \sum_{k=0}^\infty \sum_{j=0}^\infty q^{k+j}f(aq^k) \{ ax(xq^j - aq^{k+1})_{N-1} - a^{N+1}(q^j - q^{k+1})_{N-1} \}.
\]

This reduces after some simplification to

\[
[N-1]!I^{N+1}f(x) = (1-q)^2 \sum_{s=0}^\infty q^sf(xq^s)(x^{N+1} - a^{N+1}) \sum_{j=0}^\infty q^j(q^j - q^{s+1})_{N-1}
\]

\[
- (1-q)^2 \sum_{s=0}^\infty q^sf(aq^s)ax \sum_{j=0}^\infty q^j(xq^j - aq^{s+1})_{N-1}
\]

\[
+ (1-q^2) \sum_{s=0}^\infty q^sf(aq^s)a^{N+1} \sum_{j=0}^\infty q^j(q^j - q^{s+1})_{N-1}.
\]

Evaluating the inside sums in the right hand side of the above equation by means of Lemmas 1 and 3 we get

\[
I^{N+1}f(x) = \frac{(1-q)^2}{[N]!} \sum_{s=0}^\infty q^s \{ x(x - xq^{s+1})_{N}f(xq^s) - a(x - aq^{s+1})_{N}f(aq^s) \}
\]

\[
= \frac{1}{[N]!} \int_a^\infty (x - qt)_{N}f(t) d(q, t).
\]
Since (3.1) is true for \(n = 1 \) our proof is complete. We remark that Lemma 2 is required in the proof of Theorem 2.

References

University of Alberta at Calgary