A DYNAMIC PROGRAMMING GENERALIZATION OF xy TO n VARIABLES

A. P. HILLMAN, D. G. MEAD, K. B. O’KEEFE1 AND E. S. O’KEEFE

A function $\phi(d_1, \ldots, d_n)$, from the ordered n-tuples of nonnegative integers into the nonnegative integers augmented by ∞, with the following properties arises in the investigation [6] of the differential ideal generated by a product of n differential indeterminates:

(A) $\phi(d_1, \ldots, d_n)$ is symmetric in the d_i.
(B) $\phi(0) = 0$ and $\phi(x) = \infty$ for $x > 0$.
(C) $\phi(x, y) = xy$.
(D) $\phi(d_1, \ldots, d_n)$

$$= \min \left[\phi(d_1 - r, \ldots, d_a - r) + \phi(d_{a+1} - s, \ldots, d_b - s) + \ldots \\
+ \phi(d_{c+1} - t, \ldots, d_n - t) + \phi(r, s, \ldots, t) \right]$$

where r, s, \ldots, t range over all nonnegative integers such that the arguments are nonnegative.

Many other properties of ϕ can be derived from these four, including the following:

(E) $\phi(d_1, \ldots, d_n) = \min \left[\phi(d_1 - t, \ldots, d_{n-1} - t) + td_n \right]$.

(F) $\phi(d_1, \ldots, d_n) = \min \left[(d_{n-1} - T_{n-2})(d_n - T_{n-2}) + \sum_{i=1}^{n-2} t_i(d_i - T_{i-1}) \right]$,

where $T_i = t_1 + \ldots + t_i$.

Property (F) shows that ϕ is a solution of a quadratic integer programming problem. Some references are given at the close of this paper; others may be found in these listed publications.

We assume using (A) that the d_i are numbered so that $d_1 \leq d_2 \leq \ldots \leq d_n$ and then use (C) and (E) to find an explicit expression for ϕ.

Let $D = (d_1, \ldots, d_n)$. For $2 \leq i \leq n$ let $q_i = q_i(D) = (d_1 + \ldots + d_i) \cdot (i - 1)^{-1}$ and let $k = k(D)$ be the smallest i for which q_i assumes its minimum value. Let integers $q = q(D)$ and $r = r(D)$ be defined by $d_1 + \ldots + d_k = q(k - 1) + r$ and $0 \leq r < k - 1$. Let $c_i = q - d_i$ for $i = 1, \ldots, k$ and let $C = C(D) = (c_1, \ldots, c_k, r)$. Let $s_1 = c_1 + \ldots + c_k$ and $s_2 = \sum_{i<j} c_i c_j$. We define a function $f(D)$ by

Received by the editors April 3, 1965.

1 Work on this paper supported by a grant from the American Association of University Women.

720
A DYNAMIC PROGRAMMING GENERALIZATION OF xy

$$f(D) = s_2 + rs_1 + [(r + 1)r/2]$$

and show by induction on n that $f(D) = \phi(D)$, i.e., $f(D)$ satisfies (E) and (C).

If d_1, \ldots, d_n are allowed to take on all real values, it can be shown easily by induction on n that the function $\phi(D)$ satisfying (C) and (E), with t ranging over the real numbers, is

$$\phi(D) = \sum_{i<j} d_id_j - \frac{n-2}{2(n-1)} (d_1 + \cdots + d_n)^2.$$

Going back to the integer case, we note that $s_1 = (q-d_1) + \cdots + (q-d_k) = kq - [(k-1)q+r] = q-r$ and hence that

$$q(D) = s_1(D) + r(D).$$

We also observe that q_i is the average of the $i-1$ integers $d_1 + d_2, \ldots, d_i$. Therefore one and only one of the following holds for each $i \geq 3$:

1. $q_{i-1} < q_i < d_i$,
2. $q_{i-1} = q_i = d_i$,
3. $q_{i-1} > q_i > d_i$.

Since the d's are nondecreasing, if $q_i \leq q_{j+1}$ for some j then (2) implies that $q_i \leq q_{j+1} \leq q_{j+2} \leq \cdots \leq q_n$. The first such j must therefore be k. Hence we have

$$q_2 > q_3 > \cdots > q_k \quad \text{and} \quad q_k \leq q_{k+1} \leq \cdots \leq q_n.$$

It follows from (2) and (3) that

$$d_i < q_i \leq q_{i+1} \leq d_{i+1} \quad \text{if and only if } i = k.$$

Since $(k-1)q+r = d_1 + \cdots + d_k = (k-1)q_k$ and $0 \leq r < k-1$, we also note that q is the greatest integer $[q_k]$ in q_k.

In the case $n = 2$, we always have $k = 2$, $q = d_1 + d_2$, $r = 0$, $C = (d_2, d_1; 0)$ and $f(d_1, d_2) = s_2 = d_1d_2$. Hence $f(d_1, d_2) = \phi(d_1, d_2)$. We assume that $f(D) = \phi(D)$ for $n = m$ and show that it follows for $n = m + 1$.

When $n = m + 1$, we let $d_{m+1} = d$, $D^* = (d_1, \ldots, d_m, d)$, and $D = (d_1, \ldots, d_m)$. Using the hypothesis of the induction and (E) we see that $\phi(D^*)$ is

$$\min[f(D - tI) + td]$$

where t ranges over $1, 2, \ldots, d_1$ and $D - tI$ denotes (d_1-t, \ldots, d_m-t).

Let $F(t) = f(D - tI) + td$ and let $\nabla F(t) = F(t) - F(t-1)$. Clearly $\nabla F(t) = d - \Delta f(D - tI)$ where $\Delta f(D) = f(D+I) - f(D)$. We first prove the following:
Lemma. \(q(D+1) - q(D) \) is 1 if \(r(D+I) > 0 \) and is 2 if \(r(D+I) = 0 \), \(\Delta f(D) = q(D) + 1 \), and \(\nabla F(t) = d - q(D-tI) - 1 \).

Proof. Let \(C(D) = (c_1, \cdots, c_k; r) \). When \(k(D+I) = k(D) \), it is clear that if \(r < k-2 \) then \(q(D+I) = q(D) + 1 \) and that \(C(D+I) = (c_1, \cdots, c_k; r+1) \) while \(q(D+I) = q(D) + 2 \) and \(C(D+I) = (c_1+1, \cdots, c_k+1; 0) \) if \(r = k-2 \). In each of these cases, one calculates that \(f(D+I) = f(D) + s_1(D) + r(D) + 1 \). This and (1) lead to \(\Delta f(D) = q(D) + 1 \). Then \(\nabla F(t) = d - \Delta f(D-tI) = d - q(D-tI) - 1 \).

Next we note that

\[
q_i(D + I) = q_i(D) + 1 + 1/(i - 1).
\]

Since \((i-1)/(i-1)\) is a decreasing function of \(i\) for \(i \geq 2\), this implies that \(k(D+I) \geq k(D)\). Hence the only case remaining is that in which \(k(D+I) > k(k(D))\). We then have

\[
q_{k+1}(D) \geq q_k(D), \quad q_{k+1}(D + I) < q_k(D + I).
\]

Using (6) and (7) we obtain

\[
0 < q_k(D + I) - q_{k+1}(D + I)
\]

\[
= \frac{1}{k-1} - \frac{1}{k} - q_{k+1}(D) - q_k(D) \leq \frac{1}{(k-1)k}.
\]

Since \(q_{k+1}\) and \(q_k\) are both expressible as integers divided by \((k-1)k\), (8) implies that \(q_k(D+I) - q_{k+1}(D+I) = 1/(k-1)k\) and

\[
q_{k+1}(D) = q_k(D).
\]

One sees from (9) and (2) that \(d_{k+1} = q_k(D)\). One similarly finds that \(d_i = q_k(D)\) for \(k < i \leq k(D+I)\).

Since \(q_k(D) = d_{k+1}\) is an integer, we have \(q(D) = q_k(D)\) and \(r(D) = 0\). Hence \(d_i = q(D)\) for \(k+1 \leq i \leq k(D+I)\) and it is easily seen that \(q(D+I) = q(D) + 1\), \(r(D+I) = r(D) + 1 = 1\), and \(C(D+I) = (c_1, \cdots, c_k, 0, \cdots, 0; 1)\). One now calculates that \(f(D+I) - f(D) = s_1(D) + 1 = q(D) + 1\). As before, \(\nabla F(t) = d - q(D-tI) - 1\), which completes the proof of the lemma.

It follows from the lemma that \(\nabla F(t)\) increases by 1 or 2 and \(q(D-tI)\) decreases by 1 or 2 when \(t\) increases by 1.

We prove that \(f(D^*) = \phi(D^*)\) by considering cases. First let \(d \geq q(D)\). For \(1 \leq t \leq d\), we then have \(d \geq q(D) > q(D-tI)\) and so \(\nabla F(t) = d - q(D-tI) - 1 \geq 0\). Hence the minimum \(\phi(D^*)\) of the \(F(t)\) is \(F(0) = f(D)\). If \(k(D^*) > k(D)\), we must have \(k(D) = m\) and \(d \geq q(D)\) implies that \(C(D)\) and \(C(D^*)\) are of the form \((c_1, \cdots, c_m; r)\) and
(c₁, ⋯, cₘ, 0; r) respectively. If k(D*) = k(D), C(D*) = C(D).
Either way, f(D*) = f(D) = ϕ(D*).

It remains to consider d < q(D). Then dₘ ≤ d < q(D) ≤ qₖ(D) and (4)
implies that k(D) = m and k(D*) = m + 1. Now d₁ > 0 since d₁ = 0 would
imply k(D*) = 2, which is less than m + 1 for m ≥ 2. Then d ≥ d₂ > d₃
− d₁ = q(D − d₁I). Hence d − q(D − t₁I) must change sign as t goes from
0 to d₁ in one of the two following ways:

First let there be a c with 0 < c < d₁ such that d = q(D − c₁I). Then
νF(t) ≤ −1 for t ≤ c and νF(t) ≥ 0 for t > c. Hence ϕ(D*) = F(c)
= f(D − c₁I) + cd. We let k = k(D − c₁I) and show that k = m. Since c > 0,

qₖ(D − c₁I) ≤ dₖ₊₁ − c < d = q(D − c₁I) ≤ qₖ(D − c₁I)

would be a contradiction unless k = m (and dₖ₊₁ does not exist). Now
it is clear that q(D*) = q(D − c₁I) + c. Letting C(D − c₁I) = (c₁, ⋯, cₘ; r), one has C(D*) = (c₁, ⋯, cₘ, c; r) and f(D*) = f(D − c₁I) + c(c₁ + ⋯ + cₘ) + cr = f(D − c₁I) + cd = ϕ(D*).

Finally let there be a c with 0 ≤ c < d₁, d = q(D − (c + 1)I) + 1, and
d = q(D − c₁I) − 1. Then νF(t) ≤ 0 for t < c and νF(t) ≥ 2 for t ≥ c.
Hence ϕ(D*) = F(c) = f(D − c₁I) + cd. Since q(D − c₁I) − q(D − (c + 1)I)
= 2, the lemma tells us that r(D − c₁I) = 0. As before, k(D − c₁I) = m.
Let C(D − c₁I) = (c₁, ⋯, cₘ; 0). One then calculates that q(D*)
= q(D − c₁I) + c − 1, C(D*) = (c₁ − 1, ⋯, cₘ − 1, c; m − 1), and
f(D*) = f(D − c₁I) + (c₁ + ⋯ + cₘ − 1)c = f(D − c₁I) + dc = ϕ(D*). This
completes the proof.

Bibliography

1. E. M. L. Beale, On quadratic programming, Naval Res. Logist. Quart. 6
2. R. Bellman, Dynamic programming, Princeton Univ. Press, Princeton, N. J.,
1957.
3. ———, Mathematical optimization techniques, Univ. of California Press,
Berkeley, Calif., 1965.
4. R. E. Gomory, An algorithm for integer solutions to linear programs, Recent
5. ———, Mathematical programming, Slaught Memorial Paper No. 10, pp. 99–
6. A. P. Hillman, D. G. Mead, K. B. O’Keefe and E. S. O’Keefe, Ideals generated
7. H. P. Kunzi and W. Oettle, Integer quadratic programming, Recent advances in
(1959), 382–398.

University of Santa Clara and
University of Washington, Seattle