COMPLEMENTATION IN THE LATTICE OF T_1-TOPOLOGIES

A. K. STEINER

Introduction. The purpose of this paper is to study the complementation problem in the lattice of T_1-topologies. In §1 it is shown that a large class of T_1-topologies do have complements. However, in general, the lattice of T_1-topologies is not a complemented lattice; a counterexample will be presented in §2.

Let Σ be the family of all topologies definable on an arbitrary set E. For $\tau_1 \in \Sigma$ and $\tau_2 \in \Sigma$, $\tau_1 < \tau_2$ if every set in τ_1 is in τ_2. Then τ_1 is said to be coarser than τ_2 and τ_2 finer than τ_1. Under this order, Σ is a complete lattice. The greatest element of Σ is the discrete topology, 1, and the least element is the trivial topology, 0. A topology with the property that the only finer topology is the discrete topology, is called an ultraspace on E.

The collection \mathcal{G} of subsets of E consisting of $\wp(E - \{x\}) \cup \mathcal{F}$, where $x \in E$, \mathcal{F} is a filter on E, and $\wp(E - \{x\})$ is the power set of $E - \{x\}$, is a topology, denoted $\mathcal{G}(x, \mathcal{F})$. Fröhlich [2] proved that there is a one-to-one correspondence between ultraspaces on E and topologies of the form $\mathcal{G}(x, \mathcal{A})$, where $x \in E$ and \mathcal{A} is an ultrafilter on E, different from the principal ultrafilter at x, $\mathcal{A}(x)$.

An ultraspaces $\mathcal{G}(x, \mathcal{A})$ is a T_1-topology if and only if \mathcal{A} is a nonprincipal ultrafilter. In this case, \mathcal{A} contains no finite sets and $\mathcal{G}(x, \mathcal{A})$ is called a nonprincipal ultraspaces. A topology on E is a T_1-topology if and only if it is the infimum of nonprincipal ultraspaces. Since any topology finer than a T_1-topology is a T_1-topology, the family Δ of T_1-topologies is a complete sublattice of the lattice of all topologies.

The lattice Δ has a greatest element, 1, and a least element, the cofinite topology \mathcal{C}, in which the empty set and complements of finite sets are open. Hartmanis [3] investigated the lattice of topologies and the lattice of T_1-topologies on a set E. He proved that Σ is complemented if E is finite. If E is finite, Δ consists of only one element and is trivially complemented. Hartmanis then asked if these lattices are also complemented if E is infinite. It has been shown that Σ is a complemented lattice even when E is infinite, Steiner [4].

1. Complements for some T_1-topologies. Topologies $\lambda_x = \mathcal{C} \cup \{x\}$,
where C is the cofinite topology and $s \in E$, are called hyperplanes by Bagley [1]. He showed that the subset Λ_0 of Λ which consists of C and all lattice joins of hyperplanes is a full set algebra on E and is maximal (in Λ) with respect to being uniquely complemented and containing $\alpha \lor \beta$ whenever it contains α and β.

Every hyperplane is the infimum of nonprincipal ultraspaces but no ultraspaces is the supremum of hyperplanes.

Theorem 1. If τ is a T_1-topology on an infinite set $E = S \cup (E - S)$ such that $S \subseteq \tau$, $\tau|S$ is discrete and the only open subsets of $E - S$ are in C, then τ has a lattice complement in Λ.

Proof. Let τ' be the union of sets of the form:

(i) $\{x\}$, for all $x \in E - S$,
(ii) U, for all $U \subseteq C$.

Since τ' is finer than C, τ' is a T_1-topology. It is easily seen that $\tau \lor \tau' = 1$ since if $x \in S$ then $\{x\} \in \tau$ and if $x \in E - S$ then $\{x\} \in \tau'$. Let $U \in \tau \land \tau'$, $U \neq \emptyset$. If $U \not\subseteq C$, then $U \in \tau'$ implies $U \subseteq E - S$. But $U \subseteq \tau$ and $U \subseteq E - S$ imply $U \subseteq C$. Thus $\tau \land \tau' = C$ and τ' is a complement for τ.

Corollary 1. Every finite intersection of nonprincipal ultraspaces has a T_1-complement.

Proof. Let $\tau = \bigwedge_{i=1}^N \{\mathcal{S}(x_i, \mathcal{U}_i)\}$. Then $S = E - \{x_1, \ldots, x_N\}$ and $E - S = \{x_1, \ldots, x_N\}$ satisfy the conditions of Theorem 1, that is, $\tau|S$ is discrete and \emptyset is the only open subset of $E - S$.

Corollary 2. Lattice joins of hyperplanes have T_1-complements.

Proof. Let $\tau = \bigvee_{s \in A} \lambda_s$. Then $\tau = C \cup \mathcal{P}(A)$, and $S = A$ and $E - S = E - A$ satisfy the conditions of Theorem 1.

The hyperplanes do not have unique complements in Λ. For example $\mathcal{S}(s, \mathcal{U})$ and $\mathcal{S}(s, \mathcal{V})$, $\mathcal{U} \neq \mathcal{V}$, are both T_1-complements for the hyperplane λ_s.

2. **Counterexample.** An example of a T_1-topology which has no complement in Λ will now be given.

Let τ be a T_1-topology on an infinite set $E = E_1 \cup E_2$, where E_1 and E_2 are infinite and disjoint, such that $E_1 \subseteq \tau$, $E_2 \subseteq \tau$, $\tau|E_1$ is cofinite and $\tau|E_2$ is discrete. Assume τ has a complement τ' in Λ.

For each $x \in E$, $\{x\} \subseteq \tau \lor \tau'$. If $\{x\} \subseteq \tau'$ for all $x \in E_1$, then $E_1 \subseteq \tau \land \tau'$ but $E_1 \not\subseteq C$.

So assume there is some $x \in E_1$ such that $\{x\} \not\subseteq \tau'$. Then there is a $U \in \tau'$ such that $U \cap E_1$ is finite since $\{x\} = U \cap V$ for some $V \in \tau$ and
$E_1 - V$ is finite. But τ' is a T_1-topology so there is a $U* \in \tau'$ such that $\emptyset \neq U* \subseteq U$ and $U* \cap E_1 = \emptyset$. Thus $U* \cap E_1 = U*$ and $U* \in \tau \setminus \tau'$ but $U* \not\subseteq U$. Thus if $\tau \wedge \tau' = \emptyset$ then $\tau \vee \tau' \neq \emptyset$. Hence it has been verified that

Theorem 2. The lattice Λ of T_1-topologies on an infinite set E is not complemented.

References

University of New Mexico and
Texas Technological College

SPACES WITH ACYCLIC POINT COMPLEMENTS

MICHAEL C. MCCORD

1. **Introduction.** All homology groups will be singular homology with integer coefficients, reduced in dimension zero. If $0 \leq n \leq \infty$, a space X is n-acyclic if $H_q(X) = 0$ for all integers $q \leq n$.

Definition. A Hausdorff space M is an A^n-space if the complement of each point in M is n-acyclic.

The condition on a point x in M that $M - x$ be n-acyclic is similar to the notion that x be a non-r-cut point ($r \leq n$), defined by R. L. Wilder [9, p. 218], using Čech theory.

Clearly spheres are A^∞-spaces. The object of this paper is to investigate to what extent A^n-spaces are like spheres. I wish to thank W. S. Massey for useful suggestions.

2. **Statement of results. Examples.** Open cells or closed cells of dimension $n + 2$ are clearly A^n-spaces. Hilbert space l^2 is an A^∞-space; in fact by a theorem of Klee [5, p. 22], the complement of every compact subset of l^2 is homeomorphic to l^2 itself.

Received by the editors October 26, 1965.