1. Let F be a field of prime characteristic different from 2 or 3 and L a Lie algebra over F with an abelian Cartan subalgebra H. For α in H^* (the dual space of H) set $L_\alpha = \{x \in L \mid [xh] = \alpha(h)x, \text{ for all } h \in H\}$, and as usual, if $L_\alpha \neq (0)$, α is called a root with respect to H and L_α the root space for α. We have $L_0 = H$ and $[L_\alpha L_\beta] \subseteq L_{\alpha + \beta}$. Seligman and Mills in [1] have called L a Lie algebra of classical type if L contains an abelian Cartan subalgebra H and if H and L satisfy:

(i) $[LL] = L$.
(ii) L has center (0).
(iii) L is a direct sum of subspaces L_α.
(iv) If α is a nonzero root, then $[L_\alpha L_{-\alpha}]$ is one-dimensional.
(v) If α is a nonzero root and $\beta \in H^*$, then there is a positive integer m such that $\beta + m\alpha$ is not a root.

Let L be a Lie algebra over F such that L_K is of classical type, where K is the algebraic closure of F. An extension field P of F is called a splitting field for L provided L_P is of classical type. We can now state the main theorem of this paper as:

Theorem 1.1. Every semisimple Lie algebra over F with nondegenerate Killing form $(x, y) = \text{tr}(\text{ad}x)(\text{ad}y)$ has a separable splitting field.

Note that if F is finite and L has nondegenerate Killing form then every finite extension is separable, in particular one that splits L. Therefore, we may assume, in what follows, that F is infinite.

2. **Lemma 2.1.** If L is semisimple with nondegenerate Killing form, then L contains a regular element x such that the minimum polynomial of $\text{ad}(x)$ has the form:

$$\mu(\lambda) = \lambda \prod \alpha (\lambda - \alpha(x))$$

where the $\alpha(x)$ are distinct and different from zero in some extension P of F.

Proof. Recall that an element x in L is regular provided the 0-space of $\text{ad}(x)$ has minimal dimension. If x is regular in L and P is
an extension of F then x is regular in L_P. To see this, let (u_1, u_2, \cdots, u_n) be a basis for L and (X_1, X_2, \cdots, X_n) be algebraically independent indeterminants. Let $F' = F(X_1, \cdots, X_n)$. Then $X = \sum X_i u_i$ is in $L_{P'}$ and the characteristic polynomial of $\text{ad}(X)$ is given by:

$$
\det(\lambda I - \text{ad}(X)) = \sum_{i=0}^{n} M_i(X)\lambda^i,
$$

where $M_i(X) \in F[X_1, \cdots, X_n]$. If $x = \sum_{i=1}^{n} \xi_i u_i$, then $M_i(\xi) = 0$ for $i < r$, where r is the dimension of the zero space of $\text{ad}(x)$, and $M_r(\xi) \neq 0$. Also, since x is regular, $M_i(\eta_1, \eta_2, \cdots, \eta_n) = 0$ for $i < r$ and all η_i in F. Thus, since F is infinite, $M_i(X)$ is zero for $0 \leq i < r$ and

$$
\det(\lambda I - \text{ad}(X)) = \sum_{r} M_i(X)\lambda^i.
$$

Now let $y = \sum \mu_j u_j$, μ_j in P, i.e. y in L_P. Then $M_i(\mu) = 0$ for $0 \leq i < r$, so that the zero space of $\text{ad}(y)$ in L_P has dimension greater than or equal to r. Therefore x is regular in L_P as claimed. As in the above, for generic element X in $L_{P'}$, we have:

$$
\det(\lambda I - \text{ad}(X)) = \lambda(M_r(X) + M_{r+1}(X)\lambda + \cdots + M_n(X)\lambda^{n-r}),
$$

where $M_r(X) \neq 0$. Consider $g(X, \lambda)$, where:

$$
g(X, \lambda) = M_r(X) + M_r(X)\lambda + \cdots + M_n(X)\lambda^{n-r}.
$$

Then $g(X, \lambda) \in F[X_1, \cdots, X_n, \lambda] \subset F(X_1, \cdots, X_n)[\lambda] = F'[\lambda]$, and thus g has a discriminant given by:

$$
D(X_1, \cdots, X_n) = \left(\prod_{i<j} (\rho_i - \rho_j) \right)^2,
$$

where $\rho_1, \rho_2, \cdots, \rho_{n-r}$ are all roots of $g(X, \lambda)$ as a polynomial in λ in some splitting field over F', multiple ones taken as many times as their multiplicity. Now, $D(X_1, \cdots, X_n)$ is a symmetric function of the roots and therefore is in the ring generated by the elementary functions of the roots, i.e. the ring generated by $M_r(X)$, $M_{r+1}(X)$, \cdots, $M_{n-r}(X)$. Thus, there exists a polynomial $Q(y_r, y_{r+1}, \cdots, y_n)$ with integral coefficients such that

$$
Q(M_r(X), \cdots, M_n(X)) = 0
$$

if and only if $g(X, \lambda)$ has repeated roots in its splitting field. Consider $g(X) = M_r(X) Q(M_r(X), \cdots, M_n(X))$. Then $g(X) \in F[X_1, \cdots, X_n]$ and if $g(X) \neq 0$ there exist elements ξ_1, \cdots, ξ_n in F such that $g(\xi_1, \cdots, \xi_n) \neq 0$. Suppose such an n-tuple exists and set $x = \sum \xi_i u_i$,
\[
\text{det}(\lambda I - \text{ad}(x)) = \lambda^r(M_r(\xi) + M_{r+1}(\xi)\lambda + \cdots + \lambda^{n-r}).
\]

\(M_r(\xi) \neq 0\) and \(M_r(\xi) + M_{r+1}(\xi)\lambda + \cdots + M_n(\xi)\lambda^{n-r}\) has distinct roots in a splitting field. Thus \(x\) is regular and the minimum polynomial of \(\text{ad}(x)\) has the form:

\[
\mu(\lambda) = \lambda \prod_a (\lambda - \alpha(x)),
\]

where \(\alpha(x)\) are distinct and different from zero. It remains to show that \(q(X) \neq 0\). For this, let \(H\) be a standard Cartan subalgebra in \(L_\xi\) and \(h_0 \in H\) be such that \(\alpha(h_0)\) are distinct and nonzero for all roots \(\alpha\) relative to \(H\). If \(h_0 = \sum \omega_i u_i, \omega_i \in K\), then \(g(\omega_1, \cdots, \omega_n)\) is not zero, so that \(g(X_1, \cdots, X_n) \neq 0\), as desired.

3. \textbf{Proof of Theorem 1.1.} Let \(L\) be a semisimple Lie algebra over \(F\) of dimension \(n\), with nondegenerate Killing form, and \(x\) a regular element, where the dimension of the zero-space of \(\text{ad}(x)\) is \(r\) and where the minimum polynomial of \(\text{ad}(x)\) has the form:

\[
\mu_{\alpha}(\lambda) = \lambda \prod_a (\lambda - \alpha(x)), \quad \alpha(x) \in F,
\]

with all \(\alpha(x)\) distinct, different from zero, and \(n-r\) in number. We will show that \(L\) is of classical type. Note that (ii) is satisfied by our hypotheses. Let \(H\) be the zero space of \(\text{ad}(x)\). Then \(H\) is the Cartan subalgebra of \(L_\xi\) which will play the role of satisfying the remaining axioms, and \(H\) has dimension \(r\). Since all \(\alpha(x)\) are distinct and characteristic roots of \(\text{ad}(h)\), the subspaces \(L_{\alpha(x)}\) corresponding to \(\alpha(x)\) have dimension one. Then we have

\[
L = H + \sum \alpha L_{\alpha}.
\]

Now for \(h \in H\), \([hx] = 0\) and if \(y \in L_{\alpha}\), \([yhx] = [[yx]h] = \alpha(x)[yh]\). Thus \([yh] \in L_{\alpha}\), i.e. \([L_{\alpha}H] \subseteq L_{\alpha}\) for \(\alpha(x) \neq 0\). Since \(L_{\alpha}\) is one dimensional this means that for \(e_{\alpha} \in L_{\alpha}\) and \(h \in H\), \([e_{\alpha}h] = \lambda(h)e_{\alpha}\). Set \(\alpha(h) = \lambda(h)\). Thus the characteristic roots of \(\text{ad}(h)\) are in the ground field and \(L_{\alpha}\) is a root space relative to \(H\). Furthermore, the restriction to \(H\) of the Killing form on \(L\) is nondegenerate. To see this, let \(h \in H\), \(e_{\alpha} \in L_{\alpha}\), for \(\alpha \neq 0\). Then \([e_{\alpha}h] = \alpha(h)e_{\alpha}\) and we can choose \(e_{\alpha}^{(1)} \in L_{\alpha}\) such that \([e_{\alpha}^{(1)}h] = e_{\alpha}\). Then \((h, e_{\alpha}) = (h, [e_{\alpha}^{(1)}h]) = ([hk], e_{\alpha}^{(1)}) = 0\). Thus \((H, L_{\alpha}) = 0\) for all \(\alpha \neq 0\) and the form must be nondegenerate on \(H\). It follows that \(H\) is abelian. In the case where \(F\) is algebraically closed
this is a result due to Zassenhaus. In the general case a field extension argument gives the result. This, together with (2) now shows that axiom (iii) holds.

Thus we have that L contains an abelian Cartan subalgebra H, and that relative to a fixed basis for L, $\text{ad}(h)$ has a diagonal matrix for every $h \in H$. Next we note that if α is a root different from zero, then so is $-\alpha$. For, let $e_\alpha \in L_\alpha$, $e_\beta \in L_\beta$. Then, for some $h \in H$, $e_\alpha = [e_\alpha h]$, and $(e_\beta, e_\alpha) = (e_\beta [e_\beta e_\alpha], h) = 0$, unless $\beta = -\alpha$, since $[e_\beta e_\alpha] \in L_{\alpha + \beta}$. If $L_{-\alpha} = (0)$ we have $(L, e_\alpha) = 0$, a contradiction.

The nondegeneracy of the form (x, y) on H implies that for each $\alpha \in H^*$ there exists an $h_\alpha \in H$ such that $(h_\alpha, h) = \alpha(h)$, for all $h \in H$.

In what follows we shall have occasion to refer to results in Seligman’s Memoir [2] which we shall denote by M.

Lemma 3.1 (M, Corollary 3.2). If $e_\alpha \in L_\alpha$, $e_{-\alpha} \in L_{-\alpha}$, then $[e_{-\alpha} e_\alpha] = (e_{-\alpha}, e_\alpha) h$.

Since L has nondegenerate form, every derivation of L is inner [3]. Thus, for $x \in L$, $\text{ad}(x)^p$ is a derivation in L and there exists a unique $y \in L$ such that $\text{ad}(x)^p = \text{ad}(y)$. Setting $x^p = y$, L becomes a restricted Lie algebra over F and the adjoint mapping is a restricted representation of L.

We turn now to a modification of two results due to Jacobson dealing with low-dimensional Lie algebras and their representations (M, Lemma 4.1 and 4.2). The modification involves replacing algebraic closure of the ground field with the fact that for the representation U we have $U(h)$ is diagonalizable for all $h \in H$.

Lemma 3.2. Let L be a two-dimensional Lie algebra over F with basis elements e, h, and $[eh] = e$. Let U be an irreducible representation of L such that $U(h)$ and $U(e)^p$ are diagonalizable. Then either $U(e)^p = 0$ or U is equivalent to the p-dimensional representation W:

$$W(e) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}, \quad W(h) = \begin{pmatrix} \lambda & 0 \\ \vdots & \ddots \\ 0 & \cdots & 0 & \lambda + p - 1 \\ 0 & \cdots & 0 & \lambda + 1 \end{pmatrix}.$$

Proof. Suppose $U(e)^p = U(e^p) \neq 0$. Then, since $U(e)^p$ and $U(h)^p - U(h)$ are diagonalizable by our assumptions, these matrices are scalar. For, if $V_1 = \{ v | v U(e)^p = \lambda v \}$, and $V_2 = \{ v | v (U(h)^p - U(h)) = \mu v \}$, then these are invariant subspaces of the representation space V and since one of them is not zero for some λ by diagonalizability one must be the whole space. Thus in each case, $U(e)^p = \sigma I$, $\sigma \in F$,
and \(U(h)^p - U(h) = \rho I, \rho \subseteq F \). Now, let \(\lambda \) be a characteristic root of \(U(h) \) and \(\nu \neq 0 \) such that \(\nu U(h) = \lambda \nu \). Then \(\nu U(e)^p = \sigma \nu \), and the space spanned by \(\{ \nu, \nu U(e), \cdots, \nu U(e)^{p-1} \} \) is an invariant subspace of dimension \(p \), thus the whole space \(V \). To see the invariance, we note:

\[
(3) \quad \nu U(e)^k U(h) = (\lambda + k)\nu U(e)^k, \quad 0 \leq k \leq p - 1.
\]

Now, relative to this basis for \(V \), the matrices of \(U(h) \) and \(U(e) \) have the form of the lemma.

Lemma 3.3. Let \(L \) be a three-dimensional Lie algebra over \(F \) with basis \(e, f, h \) and let \([ef] = h, [fh] = 0 = [eh]\). Let \(U \) be a nonzero irreducible representation of \(L \) such that \(U(e)^p = 0 \) and \(U(f)^p = 0 \) and \(U(h) \) is diagonalizable. Then \(\text{tr}(U(e) U(f)) = 0 \).

Proof. Since \(U(h) \) is diagonalizable and centralizes the representation we have \(U(h) = \lambda I \). If \(\lambda = 0 \), then \(U(e) U(f) = U(f) U(e) \). Since both \(U(e) \) and \(U(f) \) are nilpotent, so is \(U(e) U(f) \), and thus \(\text{tr}(U(e) U(f)) = 0 \). Suppose now that \(\lambda \neq 0 \) and let \(\nu \neq 0 \) be an element of the representation space \(V \) such that \(\nu U(f) = 0 \). Such a \(\nu \) exists since \(U(f) \) is nilpotent. Now, let \(K \) be the space spanned by \(\{ \nu, \nu U(e), \cdots, \nu U(e)^{p-1} \} \). Then \(K U(e) \subseteq K \) and \(KU(h) \subseteq K \). Furthermore, we have:

\[
(4) \quad \nu U(e)^k U(f) = \nu U(e)^{k-1} U(f) U(e) + \nu U(e)^{k-1} U(h).
\]

Actually, by induction we have:

\[
(5) \quad \nu U(e)^k U(f) = k \lambda (\nu U(e)^{k-1}), \quad k \geq 1.
\]

Thus, \(K = V \), the whole space, and thus \(\{ \nu, \nu U(e), \cdots, \nu U(e)^{p-1} \} \) is a basis for \(V \). The matrices relative to this basis are:

\[
U(e) = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}, \quad U(f) = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 \\
\lambda & 0 & 0 & \cdots & 0 \\
0 & 2\lambda & \cdots & 0 \\
0 & 0 & \cdots & (p - 1)\lambda & 0
\end{bmatrix}
\]

and thus \(\text{tr}(U(e) U(f)) = 0 \) as claimed.

Using these lemmas together with our diagonalizability condition we can now prove the following analogues of the required theorems in \(M \).

Theorem 3.1 (M, Theorem 4.1). If \(\alpha \neq 0 \) is a root then \(e^\alpha_2 = 0 \).

Proof. For \(h \in H, [he^\alpha_2] = 0 \), thus \(e^\alpha_2 \subseteq H \). Choose \(h \) such that \(\alpha(h) = 1 \). Then \(\{ e_\alpha, h \} \) forms a two-dimensional Lie algebra \(L_1 \) as in Lemma 3.2. For the representation \(U(x) \) take \(\text{ad}_L(x) \). Then, the restriction of \(U \) to \(L_1 \) can be written in the form:
Furthermore, since \(\text{ad}_{L}(h)\) are diagonal for \(h \in H\), the same holds for \(\text{ad}_{L}(h)\) restricted to \(M\), \(M\) an irreducible \(L_{1}\) submodule of \(L\), and for the transformations induced by \(\text{ad}_{L}(h)\) in \(L/M\). Continuing this argument on \(L/M\) we see that \(U_{i}(h)\) is a diagonal matrix relative to a suitable basis for each \(h \in H\).

Now \((e_{a}^{\rho}, h) = \text{tr}(U(e_{a})^\rho U(h))\) and either \(U_{i}(e_{a})^\rho = 0\) or \(U_{i}(e_{a})\) has the form of Lemma 3.2. In any case, \(\text{tr}(U_{i}(e_{a})^\rho U_{i}(h))\) is zero so that \((e_{a}^{\rho}, h) = 0\). This holds whenever \(\alpha(h) \neq 0\). If \(\alpha(h) = 0\), let \(h_{1} \in H\) be chosen such that \(\alpha(h_{1}) \neq 0\). Then \(\alpha(h + h_{1}) \neq 0\) and \((e_{a}^{\rho}, h) = (e_{a}^{\rho}, h + h_{1}) - (e_{a}^{\rho}, h_{1}) = 0\). Thus, \((e_{a}^{\rho}, H) = 0\), which gives \(e_{a}^{\rho} = 0\).

Theorem 3.2 (M, Theorem 4.2). If \(\alpha \neq 0\) is a root, then \(\alpha(h_{a}) \neq 0\).

Proof. Suppose \(\alpha(h_{a}) = 0\) and \(e_{a} \neq 0\), \(e_{a} \in L_{a}, e_{-a} \neq 0, e_{-a} \in L_{-a}\) such that \((e_{a}, e_{-a}) = 1\). By Lemma 3.1 \([e_{-a}e_{a}] = h_{a}\). Let \(L_{1}\) be the algebra spanned by \(\{e_{a}, e_{-a}, h_{a}\}\). For the irreducible constituent \(U_{i}\) of the restriction of \(U = \text{ad}_{L}\) to \(L_{1}\) we have \(U_{i}(e_{a})^\rho = 0\) and \(U_{i}(e_{-a})^\rho = 0\). Thus by Lemma 3.3 we obtain \(\text{tr}(U_{i}(e_{-a})U_{i}(e_{a})) = 0\). Therefore, \(\text{tr}(U(e_{-a})U(e_{a})) = 0\), i.e. \((e_{-a}, e_{a}) = 0\), a contradiction.

Now, by Lemma 3.1 and Theorem 3.2 we have \([L_{a}L_{-a}]\) is one dimensional, giving us axiom (iv). Theorems 3.1 and 3.2 make it possible now to use the results of §5 of M. (For a complete proof of M, Lemma 5.1 see [1].) In particular, axiom (v) for our algebras is a consequence of Theorems 5.2 and 5.4 in M.

Finally, for axiom (i), we note that \([LL]_{K} = [L_{K}L_{K}]_{K} = L_{K}\), \(K\) the algebraic closure of \(F\). Hence we have:

\[\dim_{F}[LL] = \dim_{K}[LL]_{K} = \dim_{K}L_{K} = \dim_{F}L.\]

Therefore, \([LL] = L\). Thus, our algebra \(L\) is of classical type and this together with Lemma 2.1 proves Theorem 1.1.

Bibliography

The Ohio State University