ON A CLASS OF MEROMORPHIC FUNCTIONS

I. N. BAKER

In his paper [1] F. Gross considers functions \(f(z) \) and \(g(z) \) meromorphic in the plane and satisfying

\[f^n + g^n = 1, \]

where \(n \) is a fixed integer. For \(n=2 \) he shows that all meromorphic solutions of (1) are of the form

\[f = \frac{2\beta}{1 + \beta^2}, \quad g = \frac{1 - \beta^2}{1 + \beta^2}, \]

where \(\beta \) is meromorphic. In this case one may even obtain entire solutions, e.g. \(f = \sin z \), \(g = \cos z \), \(\beta = \tan (z/2) \). Gross also shows that for \(n>2 \) there are no entire solutions of (1), while for \(n>3 \) there are no meromorphic solutions.

Now the equation \(w^3 + z^3 = 1 \) defines an algebraic function whose Riemann surface has genus 1, and there is accordingly a uniformization by elliptic functions. If \(\wp(z) \) is the Weierstrass elliptic function with periods \(\omega_1, \omega_2 \) satisfying

\[(\wp')^2 = 4\wp^3 - g_2\wp - g_3, \quad g_2, g_3 \text{ constants}, \]

then (cf. [2, p. 227]) \(\omega_1 \) and \(\omega_2 \) may be chosen so that

\[g_2 = 0, \quad g_3 = 1. \]

With this \(\wp(z) \) we find that

\[f(z) = \frac{1}{2} + \frac{\wp'(z)}{(12)^{1/2}} \bigg/ \wp(z), \]

\[g(z) = \frac{1}{2} - \frac{\wp'(z)}{(12)^{1/2}} \bigg/ \wp(z), \]

satisfy

\[f^3 + g^3 = 1. \]

The formulas (2) differ from the analogous formulae in [1], which seem to contain an error.

With the aid of the functions in (2) one may verify a conjecture made by F. Gross in [1], viz. that meromorphic solutions of (3) are

Received by the editors March 28, 1966.
necessarily elliptic functions of entire functions. We shall prove

Theorem 1. Any functions $F(z), G(z)$, which are meromorphic in the plane and satisfy

$$F^3 + G^3 = 1,$$

have the form

$$F = f(h(z)), \quad G = \eta g(h(z)) = \eta f(-h(z)) = f(-\eta^2 h(z)),$$

where f and g are the elliptic functions in (2), $h(z)$ is an entire function of z and η is a cube-root of unity.

Proof. Write $\rho = \exp(2\pi i/3)$. If F and G are meromorphic solutions of (4), then since $F = (1 - G^3)^{1/3}$ is single-valued, it follows that the multiplicity of any solution z of $G(z) = \rho, \rho^2$ or 1, is a multiple of 3.

We shall need to discuss the singularities of the inverse function $f^{-1}(w)$ of the $f(z)$ in (2). Since $f(z)$ is a doubly periodic function it has neither finite nor infinite asymptotic values and hence, by Iversen’s theorem, all the singularities of $f^{-1}(w)$ are algebraic. We prove that these singularities all lie over $w = \rho, \rho^2$ or 1. First note that $\wp(z)$ has double poles at the points $m\omega_1 + n\omega_2, m, n$ integral, and so $f(z)$ has single poles at these points. $\wp(z)$ has poles nowhere else, so that the other poles of $f(z)$ are at the zeros of $\wp(z)$ and hence there are two simple ones in each period parallelogram, since $\wp(z)$ takes each value twice in such a parallelogram, while $\wp(z) = 0$ implies

$$(\wp')^2 = 4\wp^3 - 1 = -1 \neq 0.$$

Thus altogether $f(z)$ has three simple poles in each period parallelogram S, while by differentiation $f'(z)$ has three double poles and thus f and f' take each value three or six times respectively, in S. Now $f^3 + g^3 = 1$, so that by the first remarks of this proof $f = \rho, \rho^2$ and 1 at least triply at each solution. Thus f takes each value ρ, ρ^2 and 1 precisely at one point in S, the derivative f' having a double zero at each of these points and at no other points of S. Thus all singularities of $f^{-1}(w)$ lie over $w = \rho, \rho^2$ and 1. In particular $w = \infty$ is a regular point of each branch of $f^{-1}(w)$.

We return to the consideration of F, G satisfying (4), and in the neighborhood of any value z_0, such that $w = F(z_0) \neq \rho, \rho^2, 1$, we take any branch of $f^{-1}(w)$ and form the regular function element

$$h(z) = f^{-1}(F(z)).$$

Now $h(z)$ may be continued analytically along any curve γ in the plane without restriction. Obviously the continuation can only fail
when \(\gamma \) reaches a point \(z_1 \) such that \(w_1 = F(z_1) = \rho, \rho^2 \) or 1. Denote by \(\gamma_1 \) the arc of \(\gamma \) between \(z_0 \) and \(z_1 \), exclusive of the end point \(z_1 \). Then \(h(z) \) is regular along \(\gamma_1 \) and for each point \(z \) on \(\gamma_1 \) there is a branch of \(f_{-1} \) such that \(f_{-1}(F(z)) = h(z) \). Now \(z_1 \) is a \(3k \)-fold solution of \(F(z_1) = w_1 \), so \(F(z) = w_1 + \{ \phi(z) \}^3 \), where \(\phi(z) \) is a regular function in the neighborhood \(N: |z - z_1| < \delta, \delta > 0 \), and satisfies \(\phi(z_1) = 0 \). We may suppose \(\delta \) chosen so small that for \(z \) in \(N \) we have \(|F(z) - w_1| < 1 \).

Now in the neighborhood \(M: |w - w_1| < 1 \), the only branch points of \(f_{-1}(w) \) lie over \(w = w_1 \). For some \(z \) in \(\gamma_1 \cap N \) we form \(w = F(z) \) in \(M \) and choose the branch \(f_{-1}(w) \) such that \(f_{-1}(F(z)) = h(z) \). We note that for neighboring values \(z \) we obtain the same branch \(f_{-1}(w) \), which indeed has an expansion

\[
f_{-1}(w) = \lambda + P((w - w_1)^{1/3}), \quad |w - w_1| < (3)^{1/2},
\]

where \(\lambda \) is a constant and \(P(t) \) is a convergent power series in \(t \). Thus we must have for all \(z \) in \(\gamma_1 \cap N \), using \(F = w_1 + \phi^3 \), an expression

\[
h(z) = \lambda + P(\mu \phi),
\]

where \(\mu \) is a fixed 3rd root of unity and \(\phi \) is regular in \(N \). This expression gives a regular continuation of \(h(z) \) over the value \(z_1 \). Thus we have verified that \(h(z) \) can be continued throughout the plane to give (by the monodromy theorem) a function regular in the plane i.e. an entire function.

We now have \(F(z) = f(h(z)) \) and

\[
F^3 + G^3 = 1, \quad f^3 + g^3 = 1, \quad f(h)^3 + g(h)^3 = 1 = F^3 + g(h)^3.
\]

Hence \(G^3 = g(h)^3, \quad G = \eta g(h) \), where \(\eta \) is (since \(G, g(h) \) are regular) a fixed third root of unity. Since \(\phi \) is even and \(\phi' \) is odd we have \(f(-z) = g(z) \) and \(G \) can also be written \(\eta f(-h) \).

We remark finally that (cf. [2, p. 168]) \(\phi(z) \) has an expansion

\[
\phi(z) = \frac{1}{z^2} + \sum_{n=3}^{\infty} C_n z^{2n-2},
\]

where

\[
(n - 3)(2n + 1)C_n = 3(C_2C_{n-2} + C_3C_{n-3} + \cdots + C_{n-2}C_2),
\]

\[
n = 4, 5, 6, \ldots,
\]

\[
C_2 = \frac{1}{20} g_2, \quad C_3 = \frac{1}{28} g_3.
\]
Since \(g_2 = 0, g_3 = 1 \), it is easy to prove inductively that \(C_n = 0 \) unless \(n \equiv 0 \) modulo 3. Substitution in (2) shows that \(zf(z)\) is a function of \(z^3\), so that

\[
f(\eta z) = \eta^2 f(z), \quad \eta^3 = 1.
\]

This shows that \(f(-\eta^2 h(z)) = \eta f(-h(z)) \), and the proof of the equivalence of the various expressions for \(G \) in (5) is complete.

References

Imperial College of Science and Technology, London

ON THE BOUNDARY BEHAVIOR OF FUNCTIONS MEROMORPHIC IN THE UNIT DISK

PETER COLWELL

1. **Introduction.** Let \(f(z) \) be meromorphic in \(D: \{ |z| < 1 \} \), and suppose that the values assumed by \(f(z) \) in \(D \) lie in a domain \(G \) whose boundary \(\Gamma \) has positive logarithmic capacity. Then \(f(z) \) is of bounded characteristic in \(D \) and has finite radial limits \(f(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta}) \) at almost all points \(e^{i\theta} \) on \(C: \{ |z| = 1 \} \). (For this and more general theory of meromorphic functions, see [4, pp. 208 ff.].) The class of functions satisfying these conditions and having the additional property that \(f(e^{i\theta}) \) belongs to \(\Gamma \) almost everywhere on \(C \) has been studied by O. Lehto [3] and D. A. Storvick [6], who called it class (L).

If \(A \) is a sequence of points in \(D \) satisfying \(\sum_{a \in A} (1 - |a|) < \infty \), the Blaschke product with respect to \(A \) in \(D \) is the function \(B(z; A) = \prod_{a \in A} [(1 - |a|) / a(a - \bar{a}z)] \). The present note arises from a suggestion by Professor Storvick that the following theorem, established in [1], be extended to functions in class (L). Here we denote by \(A' \) the derived set of \(A \).

Theorem 1. Let \(E \) be a set on \(C. A \) necessary and sufficient condition

Presented to the Society, November 5, 1965; received by the editors February 17, 1966.