ON CONFORMALLY-FLAT RIEMANNIAN
SPACE OF CLASS ONE

R. N. SEN

1. The purpose of this paper is two-fold; first, to obtain necessary and sufficient conditions that a conformally-flat orientable Riemannian space \(C^n \) with \(n \geq 3 \) be of class one; second, to obtain a normal form for the metric of such a space. A Riemannian space \(V_n \) is a conformally-flat space if there exists a scalar function \(\sigma \) such that the product \(\sigma g_{ij} \) of \(\sigma \) and the fundamental tensor \(g_{ij} \) has zero curvature; it is of class one if it is isometrically embeddable as a hypersurface in a Euclidean space. The conformal flatness property can be expressed by the condition that \(s_i = \frac{1}{2} \partial_i \log \sigma \) is related to the curvature tensor by

\[
R_{hijk} + g_{hk}s_{ij} + g_{ij}s_{hk} - g_{hjs}g_{ik} - g_{ik}s_{hj} = 0,
\]

where

\[
s_{ij} = \nabla_i s_j - s_i \delta_j + \frac{1}{2} g_{ijs} s_k^k.
\]

The condition of class one, for an orientable space, implies the existence of a (second fundamental) symmetric tensor \(b_{ij} \) such that

\[
R_{hijk} = b_{hj}b_{ik} - b_{hk}b_{ij}; \quad \nabla_i b_{jk} - \nabla_j b_{ik}.
\]

The converse is true in the local sense.

The algebraic relations (1), (3) lead to a result of J. A. Schouten [1] which states that \(n - 1 \) of the eigenvalues of \(b_{ij} \) at each point of a \(C^n \) are equal. Denote this value by \(\rho \), the remaining eigenvalue by \(\bar{\rho} \) and denote by \(e_i \) the eigenvector of \(b_{ij} \) belonging to \(\bar{\rho} \). The quantities \(\rho, \bar{\rho} \) are also known as the principal normal curvatures and \(e_i \) the unit vector tangential to the line of curvature corresponding to \(\bar{\rho} \). Assume that \(\bar{\rho} \neq \rho \neq 0 \). Then

\[
b_{ij} = \rho g_{ij} + (\bar{\rho} - \rho) e_i e_j
\]

and by contraction of (3) we express the Ricci tensor in terms of \(g_{ij} \) and \(e_i e_j \); or in \(g_{ij} \) and \(b_{ij} \). We thus find (a), (b) below; by the second identity in (3) together with the property of conformal flatness we find (c) below.

\[
(b) \quad b_{ij} = -\frac{1}{n-2} \left(\frac{1}{\rho} R_{ij} + \bar{\rho} g_{ij} \right).
\]

Received by the editors May 27, 1965.
(b) \(R_{hijk} = \rho^2(g_{hj}g_{ik} - g_{hk}g_{ij}) \\
+ \rho(\bar{\rho} - \rho)(g_{hj}e_i e_k + g_{ik}e_h e_j - g_{hk}e_i e_j - g_{ij}e_h e_k), \)
\(\partial_i \rho \) is proportional to \(e_i \).

These formulas are due to Verbickii [2]; he also showed that the existence of scalar functions \(\rho, \zeta, \bar{\rho} \) and a unit vector field \(e_i \) such that (b), (c) hold is sufficient that \(V_n \) be locally a \(C^1_n \).

2. The above results are most easily verified by choosing an orthonormal basis for the tangent space consisting of eigenvectors of \(b_{ij} \); we choose \(e_i \) to be the first of these. Then \(g_{ij} \) and \(b_{ij} \) take diagonal forms with respect to this basis,
\[
[g_{ij}] = \text{diag}(1, 1, \cdots), \quad [b_{ij}] = \text{diag}(\rho, \rho, \rho, \cdots).
\]
For brevity we only give the first two diagonal elements:
\[
[g_{ij}] = \text{diag}(1, 1); \quad [b_{ij}] = \text{diag}(\bar{\rho}, \rho, \rho, \cdots); \quad [e_i e_j] = \text{diag}(1, 0).
\]

Then
\[
[R_{ij}] = \text{diag}(-(n - 1)\rho \bar{\rho}, -(n - 2)\rho^2 + \rho \bar{\rho});
\]
and among \(g_{ij}, b_{ij}, R_{ij}, e_i e_j \) any one can be written as a linear combination of any two. This is how (5) below is proved.

Theorem 1. If a \(V_n \) is a \(C^1_n \), then there are scalars \(E \neq 0 \) and \(F \) such that
\[
(5) \quad R_{hijk} = E(R_{hj}R_{ik} - R_{hk}R_{ij}) + F(g_{hj}g_{ik} - g_{hk}g_{ij}).
\]
Conversely, if in a \(C_n \) scalars \(E \neq 0 \), \(F \) exist such that (5) holds, where
\[
(6) \quad R = -\frac{n - 1}{(n - 2)E} + (n - 1)(n - 2)F,
\]
then \(C_n \) is a \(C^1_n \).

Proof of the converse. Contraction of (5) with \(g^{hk} \) gives
\[
R_{ij} = ER_{ij}R_{ik} - ERR_{ij} - (n - 1)F g_{ij}.
\]
Hence, every eigenvalue \(\lambda \) of \(R_{ij} \) satisfies
\[
\lambda = E \lambda^2 - ER \lambda - (n - 1)F;
\]
which, by (6), has as its solutions
\[
\lambda = \frac{-1}{(n - 2)E}, \quad \tilde{\lambda} = (n - 1)(n - 2)F.
\]
By (6), \(\lambda \) has multiplicity \(n - 1 \); \(\tilde{\lambda} \) has multiplicity 1. The situation is now easily reduced to that of a \(C_n \) involving a second fundamental tensor \(b_{ij} \) which is a linear combination of \(g_{ij} \) and \(e_i e_j \), where \(e_i \) is a unit eigenvector of \(R_{ij} \) associated with \(\lambda \). It is a simple exercise to relate the \(\lambda, \tilde{\lambda} \) above with \(\rho, \tilde{\rho} \) resulting in

\[
\lambda = - \left\{ (n - 2)\rho^2 + \rho \tilde{\rho} \right\}, \quad \tilde{\lambda} = -(n - 1)\rho \tilde{\rho}.
\]

We thus obtain

Theorem 2. If a \(V_n \) is a \(C_n^1 \), then

\[
R_{hijk} = \frac{R_{hjR_{ik}} - R_{hkR_{ij}}}{(n - 2)\left\{ (n - 2)\rho^2 + \rho \tilde{\rho} \right\}} - \frac{\rho \tilde{\rho}}{n - 2} (g_{hj}g_{ik} - g_{hk}g_{ij}),
\]

where \(\rho \neq 0, \tilde{\rho} \neq 0 \) are scalars. Conversely if a \(C_n \) satisfies (7), then \(C_n \) is a \(C_n^1 \) if \(R = - (n - 1)\left\{ (n - 2)\rho^2 + 2\rho \tilde{\rho} \right\} \).

3. Theorem 1 of §2 can be applied to find the metric of a \(C_n^1 \). This can be done by taking the fundamental tensor of a \(C_n \) in the form \(g_{ii} = 1/\phi^2, \ g_{ij} = 0, \ (i \neq j) \), and looking for the general form of \(\phi \) for which the equations (5) and (6) are satisfied. The fundamental tensor is then obtained in a canonical form as

\[
g_{ii} = 1/[f(U)]^2, \quad g_{ij} = 0, \quad (i \neq j), \quad \text{where} \quad U = \sum_i (X^i)^2 + c
\]

and \(X^i = ax^i + b^i \) with \(a \neq 0, b, c \) constants,

where \(f \) is any real analytical function of \(U \) subject to a restriction stated below. The normal form of the metric is now obtained by taking \(a = 1, b^i = c = 0 \) in (8).

This metric and some properties which have been obtained in previous papers [3], [4] are stated in the following theorem:

Theorem 3. The coordinates of any \(C_n^1 \) may be so chosen that its metric assumes the normal form

\[
ds^2 = \sum_i (dx^i)^2/[f(\theta)]^2, \quad \theta = \sum_i (x^i)^2,
\]

where \(f \) is any real analytic function of \(\theta \) subject to the restriction

\[(n - 1)ff' + \theta ff'' - (n - 1)\theta f'^2 \neq 0, \quad (f' = df/d\theta, \ etc.).\]

If \(\rho \neq 0 \) and \(\tilde{\rho} \) are the eigenvalues of multiplicity \(n - 1 \) and 1 respectively of the second fundamental tensor of the space (9), then

\[
\rho^2 = 4f'(f - \theta f'), \quad \rho \tilde{\rho} = 4(ff' + \theta ff'' - \theta f'^2).
\]
The eigenvector $e_i = x^i/\theta^{1/2}f$ corresponding to \bar{p} is orthogonal to the hypersurface having constant curvature $\tilde{k}^2 = f^2/\theta$. If the C^a_n is symmetric in the sense of Cartan, then either $f = a\theta + b$ (a space of constant curvature) or $f = c\theta^{1/2}$, where a, b, c are nonzero constants. In the second case e_i is a parallel vector field and the C^a_n is reducible.

I am thankful to the referee for his helpful suggestion in the matter of presentation of the paper.

Department of Pure Mathematics, Calcutta University

References

2. L. L. Verbickii, Geometry of conformal Euclidean spaces of class one, Vol. 9, Transactions of the seminar of vector and tensor analysis (translated from Russian), 1952, pp. 146–182.

4. ———, Conformally Euclidean space of class one, Indian J. Math. 6 (1964), 93–103.