Uniqueness theorem for the reduced wave equation under an $N$th order differential boundary condition
HTML articles powered by AMS MathViewer
- by R. C. Morgan
- Proc. Amer. Math. Soc. 17 (1966), 780-787
- DOI: https://doi.org/10.1090/S0002-9939-1966-0203279-4
- PDF | Request permission
References
- F. C. Karal and S. N. Karp, Phenomenological theory of multi-mode surface wave excitation, propagation and diffraction. I, Plane Structures, New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-198, 1964.
—, Phenomenological theory of multi-mode surface wave structures, Quasi-Optics Symposium, Brooklyn Polytechnic Inst., Wiley, New York, 1964; New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-201, 1964.
- Julius Kane, A uniqueness theorem for the reduced wave equation, Proc. Amer. Math. Soc. 12 (1961), 967–972. MR 133588, DOI 10.1090/S0002-9939-1961-0133588-4
- A. S. Peters and J. J. Stoker, A uniqueness theorem and a new solution for Sommerfeld’s and other diffraction problems, Comm. Pure Appl. Math. 7 (1954), 565–585. MR 63539, DOI 10.1002/cpa.3160070307
- Richard C. Morgan and Samuel N. Karp, Uniqueness theorem for a surface wave problem in electromagnetic diffraction theory, Comm. Pure Appl. Math. 16 (1963), 45–56. MR 149079, DOI 10.1002/cpa.3160160107 R. C. Morgan, F. C. Karal and S. N. Karp, Solution to the phenomenological problem of a magnetic line source above a plane structure that supports $N$-excited surface wave or leaky wave modes, New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-215, 1965.
- Alexander Weinstein, On surface waves, Canad. J. Math. 1 (1949), 271–278. MR 30865, DOI 10.4153/cjm-1949-023-x R. C. Morgan, Pseudo-radiation conditions for derivatives of radiating functions, New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. BR-54, 1965. [Cf. R. C. Morgan, Thesis; Chapter I, Part A.]
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 780-787
- MSC: Primary 35.75
- DOI: https://doi.org/10.1090/S0002-9939-1966-0203279-4
- MathSciNet review: 0203279