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1. Introduction. Arsove and Edwards in [2] studied generalized

bases in linear topological spaces. In this paper, we study a concept

which is, in a sense, dual to that of the generalized basis.

Let X be a linear topological space, and let {x„} be a family of

elements of that space. Suppose there is a total family of linear func-

tionals, {<pa} EX*, such that <pa(xp) = 5as, the Kronecker delta. Then

{x„} is called a generalized basis for X. Ii we do not ask that {<pa}

be a total family, but demand that {x«} be total (i.e. fundamental)

in X, the resulting biorthogonal system is to be called a dual general-

ized basis system.

We shall see (example 2) that dual generalized bases do arise

rather naturally. Furthermore every locally convex, separable Haus-

dorff space contains a dual generalized basis. This second result is

due to Klee [8]. Arsove and Edwards [2] derived an isomorphism

theorem for spaces containing generalized bases which we use to de-

rive a corresponding result for spaces containing dual generalized

bases. We also use the Arsove-Edwards theorem to derive isomor-

phism theorems for quotient spaces of spaces admitting maximal bi-

orthogonal systems.

The author wishes to thank the referee for his helpful suggestions.

2. Classification of maximal biorthogonal systems. Let I be a

linear topological space with conjugate space X*, and suppose

{xa} EX, {<pa} EX* such that (pa(x$) = 8a$. The system {xa; <pa} is

called a biorthogonal system. A second biorthogonal system {x„ ; <pa' !

is an extension of the first if {xa; <pa} E {xa'; <pa' }. The system {x„; <pa}

is maximal if it has no proper extension. We denote the linear span of

the family {xaJ by sp{x„}, and the closure of this span by [x«].

(This closure is always to be understood in the topology under con-

sideration.) The coefficient map, «$(•). takes X into the space A of all

generalized sequences {aa}, and is defined by $(x) = {<pa(x)}.

Dieudonne [3] gives the following criterion for the maximality of a

biorthogonal system {x„; <pa} ■ The system is maximal if and only if

(a) [xa]xC [<pa], or (b) fl„ 9l(<pa)C [xa]. (9l(<p«) denotes the null space

of (pa).

Julia [5] constructed a maximal biorthogonal system in a Hilbert

space with the property that both 9I(d>) and A'^fxa] are both infinite
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dimensional. It seems reasonable, however, that the more interesting

systems should have at least one of the families, Jx„} or \<pa}, total.

A biorthogonal system {xa; ipa\ will be called a total system if either

[x„] =X or 3l($) = {o}. This gives three types of total biorthogonal

systems:

(1) {xa; <pa] has both [xa]=X and 9l(<i>) = {0}. (Markushevich

basis sytem, or complete biorthogonal system, see [2].)

(2) \xa; <pa} has at least [x„] =X.

(3) \xa; <pa} has at least 3l(3>) = Jo}. (Generalized basis system,

see [2].)

Since the second type appears to be dual to the third in terms of the

pairing (X, X*), it is called a dual generalized basis sytem. This dual-

ity is more than merely formal, and will be used in deriving the iso-

morphism theorem in §4.

To see that dual generalized bases do occur rather naturally, con-

sider a biorthogonal system {pnix); w„(x)} in P2( —1, 1), where

J£„(x)} is a simple sequence of polynomials (that is, the degree of

pnix) is precisely w). If the sequence |w„(x)} is not total, the system

is indeed of type (2), since [pnix)]=L2i—l, 1) by the Stone-Weier-

strass theorem. To construct such an example in L2( —1, 1), one may

start with the Legendre polynomials, and proceed as in the example

of [2, p. 100].

3. Minimality and biorthogonality. In a finite dimensional space,

a necessary condition that a set of vectors form a basis is linear in-

dependence. A natural extension of this condition is also necessary

for a family {xa} in an infinite dimensional linear topological space

to be a basis. This condition, discussed by Kaczmarz and Steinhaus

[6], is called minimality, and is defined as follows: A family {x„} is

minimal if no xa is in the closure of the span of the remaining elements

of the family. That is, {x„} is minimal if x„(J; [x^]^* for each a.

Minimal sequences in Banach spaces were studied by Frink [4J. A

result of his which is generally true for linear topological spaces is:

Lemma. // {x„} is minimal, for any a and any xE [xa] there is a

unique scalar aa such that x — aaxaE [x^]^a.

If X is a Banach space, Frink showed that \xa] is minimal if and

only if there exists a family {<p«} EX* such that the system {xa; <pa}

is biorthogonal. This result extends readily to more general linear

topological spaces, see, for example [9, p. 10]: Let X be a locally con-

vex, Hausdorff linear topological space. A family {xa} in X is mini-

mal if and only if there exists a family of continuous linear functionals

[<pa\ such that the system {xa; <p„} is biorthogonal.
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Any biorthogonal system for a locally convex Hausdorff space may

be extended to a maximal biorthogonal system. The proof of this

assertion amounts to a simple application of Zorn's lemma. It is not

true, however, that any minimal family extends to a total family.

This amounts to saying just that there is a generalized basis {xa} in

some space which is a subset of no total generalized basis for that

space. An example of such a generalized basis is the unit vector

"basis" for the space (m) of bounded sequences.

If {xa} is a nontotal generalized basis for the locally convex Haus-

dorff space X, the following process may be used to increase the fam-

ily one element at a time. Let yEX~[xa}. Then, the Hahn-Banach

theorem yields a continuous linear functional y* such that y*(y) = 1

and y*([x„]) =0. Let {(pa} be the total family of functionals originally

associated with {xa}. The family {x„, y} is a generalized basis with

the family of coefficient functionals {(pi, y*} defined by (pa =<p«

— ((pa(y))y*- The biorthogonality of {x„, y; <p« , y*} is clear. We must

merely show that the family {<p„' ; y*} is total. Let x£9l(<l?')> where

<£' is the new coefficient mapping. Then y*(x)=0 and <pa(x)=0 for

each a. Since {xa; qoa} is a generalized basis system, this last equality

implies that x = 0, so that the family {<pa', y*} is total. We have, then,

this proposition:

Proposition. // {x„} is a nontotal generalized basis for a locally

convex, Hausdorff space, X, there is a generalized basis {ua} for X such

that {Xa} E {ua}, but {xa} 9* {ua}.

Every separable, locally convex Hausdorff space contains a dual

generalized basis [8]. In fact, every separable Banach space contains

a Markushevich basis [lO].

4. Isomorphism theorems. A useful concept in the comparison of

bases and biorthogonal systems is that of similarity. Arsove [l] calls

two bases similar if the same families of expansion coefficients yield

convergent expansions in terms of both bases. From this definition he

shows that Frechet spaces having similar bases are themselves iso-

morphic.

In [2], the definition of similarity is extended as follows: Let

{x„; (pa} be a biorthogonal system with {x„| EX, and {ya; ipa} a

biorthogonal system with {ya} EY. Let $ and ^ be the correspond-

ing coefficient mappings. Then, {x„; <pa} and {ya; \f/a} are similar if

$(X) =^(Y). From this they deduce the important isomorphism

theorem which we shall need in the following.
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Theorem (Arsove-Edwards). Let X and Y be complete metric

linear spaces containing similar generalized bases {x*\ and {ya\ re-

spectively. Then, there is an isomorphism T of X onto Y such that

r(*«)=y«.

The known converse of this theorem is true in the more general

form: Let X and F be linear topological spaces isomorphic under the

map T. If jx«j EX is a Schauder basis (Markushevich basis, general-

ized basis, dual generalized basis), then the family \ya\ defined by

Txa = ya is also a Schauder basis (etc.) for F.

Using the isomorphism theorem, we get an isomorphism for certain

quotient spaces of complete metric linear spaces, which contain sim-

ilar maximal biorthogonal systems. First we need the lemma:

Lemma 2. Let \xa; </><*} be a biorthogonal system for the linear topo-

logical space X. Let Q denote the quotient map from X to X/9l($).

(i) {Qixa); 0a} is a generalized basis for X/ai^), where </>a is de-

fined by 0„(<2(x))=0a(x).
(ii) // {x„; <ba\ is a dual generalized basis, then [Qixa); <i>a} is a

Markushevich basis.

(iii) // {x«; <pa\ is a maximal biorthogonal system for a locally con-

vex, Hausdorff space X, then [ Qixa); 4>a} is a Markushevich basis for

X/9X($) if and only if [xa; d>a] is a dual generalized basis system for X.

Proof. Let A denote the range of <i>. Define the map <i>: X/9l($)

-^>A by Q o Q =<!>. Then, topologize A with the topology induced from

X/3l($) by 4>. With this topology, <£ must be continuous. Further

4> is the coefficient map associated with the continuous linear func-

tionals, {<£«}. It is clear that 3l(#) = {0}, proving (i). If [xa} is total,

then so is {Qixa)}, so we have (ii). For (iii), assume that {(?(*«)} is

total. From the maximality of the system {x„; <f>a\, we have 9l($)

C [xa], so if fE [xa]x, then fEiSlify)-1. Therefore, / induces a map

/: X/<3li<S/)-+A defined hyf=foQ. Therefore,/((?(*«)) =/(*«.) =0, and
the totality of {(?(*«)} gives us/=0. Therefore,/ = 0 and \xa] is

indeed a total family.

Theorem 1. Let X and Y be complete metric linear spaces. Let

{xa; <pa\ and {ya; \pa} be similar biorthogonal systems for X and Y

respectively. Then, there is an isomorphism T: X/9l(<E>)—>F/Sd(Sf/) such

that TiQxa) = Q'ya, (<3 and Q' are the quotient maps involved.)

The proof follows from the lemma and the Arsove-Edwards iso-

morphism theorem.

Lemma 3. Let {xa; <pa\ be a biorthogonal system for a space X. Let
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x: X—>X** be the canonical map. If the biorthogonal system is a dual

generalized basis sytem for X, then {<f>a; x(*«)} is a generalized basis

for X*.

Note. The dual form of this lemma does not hold: Let {en} be the

"unit vector basis" for the spaces (/) and (m). Let Xi'- (I)—*(»»*) and

Xm- (m)-^(m**) be the canonical embeddings. Then {en; Xi(en)} ls a

generalized basis for (m), but {xi(^n); Xm(0 } is not even a maximal

system.

Proof. Let {x„; <pa} be a dual generalized basis sytem. Let

/ena3l(x„). Then, /(*„)= 0 for all a, so f(u)=0 for each uEX.
That is,/=0, so {(pa; xa} is a generalized basis sytem for X*.

We now define the dual form of similarity: Let X and Y be linear

topological spaces. Let {xa;<p«} and {ya'.^a} be biorthogonal systems

for X and Y, respectively. If X and Y are the coefficient maps associ-

ated with the families {xa} and {y~a}, the systems {xa; <pa} and

{ya; ^a} are said to be *-similar if X(X*) = Y(Y*). Using this defini-

tion, the following lemma is a corollary of the Arsove-Edwards theo-

rem.

Lemma 4. Let X and Y be linear topological spaces with metric topol-

ogies on X* and Y* making them complete. If {xa; (pa} and {ya; ^a}

are *-similar dual generalized bases, then there is an isomorphism 3 of

X* onto Y* such that 3(<p0) =i/v

With this lemma, we have the machinery to prove the isomorphism

theorem.

Theorem 2. Let X and Y be Banach spaces, and let {xa; <pa},

jy0;^„j be *-similar dual generalized basis for X and Y respectively.

Then, X and Y are isomorphic under a map T satisfying P(x„) =ya-

Proof. By Lemma 4, there is an isomorphism S: Y*—>X* with

Stya) =<f>a- We let {xa} and {$a} denote the canonical images of

{xa} and {ya} in the second conjugates X** and Y**. For any

$E Y*, we have ((S*(xa) —$a)^ = xa(S(\l/)) -$*($) =0 from the defini-

tion of the isomorphism S (see [2; p. 100]). Thus, 5*(x«)=y„, and

we must have Z7[xa]= [$a] under the restriction, U, of S* to [xa].

Therefore, if %x and xy are the canonical embeddings, the desired

isomorphism is given by T = xy1 o U oxx-

The property of Banach spaces that makes this theorem valid is

the fact that the canonical maps are isomorphisms.

5. Related results. If {x„; (pa} is a generalized basis system for a

locally convex space X, the family {(pa} is uniquely determined if
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and only if {x„} is total. A similar situation holds for dual generalized

basis systems.

Theorem 3. Let [xa; <pa\ be a dual generalized basis system for the

linear topological space X. The family [xa] is uniquely determined if

and only if {<pa} is total.

Proof. Suppose [tpa] is not total, and letw£9l(<£) such thatw^O.

Let x^ =xa+eau, where ea vanishes except for a finite number of in-

dices, aj, and then eaj = 1. Let A' be the index set for {xa} with the

a/s removed. The family \xi } is clearly total if the element u is in

[x0]ae^'. By the lemma of Frink's mentioned in §3, the element

u— zZl-i >P<*iiu)xaj is in [xa]ae4'. The sum involved vanishes since

uE^-i^)- Thus, uE[xa]a£A', so \x/ } is total. This proves that

{xa ; (pa\ is a dual generalized basis. The converse is immediate.

If the spaces X and F are "nice" enough (for example, Banach

spaces) a generalized basis for X which is not total cannot be simul-

taneously similar and *-similar to a noncomplete dual generalized

basis in F.

Proposition 3. Let X and Y be Banach spaces. Let {x„; <pa\ be a

generalized basis system for X which is simultaneously similar and *-

similar to the dual generalized basis system {ya; ypa} for Y. Then X and

Y are isomorphic under T with Txa = ya and both systems are Markush-

evich basis systems.

Proof. According to similarity, Lemma 2 and Theorem 1, there

is an isomorphism f from X = X/3li$) to F/SJl^). By Lemma 2, if

Q': F—>F/3l(^), the family {Q'iya)} is a Markushevich basis for

F/SdOl7). Since T is an isomorphism, and since T~1iQ'iya)) =*«, the

family {x„} is a Markushevich basis for X. Using the *-similarity

and Theorem 2, there is an isomorphism T: X —> Y, such that

{ Txa = ya] is a Markushevich basis for F.
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