ON FUNCTION SPACES OF STRATIFIABLE SPACES AND COMPACT SPACES

CARLOS J. R. BORGES

1. Introduction. Throughout, for any topological spaces X and Y, \(Y^X \) will denote the space of continuous functions from X to Y with the compact-open topology, unless otherwise stated. Since stratifiable spaces, which we studied in [2], have many of the desirable properties of metrizable spaces (every CW-complex of Whitehead is stratifiable—see Theorem 7.2 in [2] or Theorem 8.1 in [3]; furthermore, it is easily seen that metrizable spaces are stratifiable and every stratifiable space is paracompact and perfectly normal), we naturally questioned whether \(Y^X \) is stratifiable given that X is compact Hausdorff and Y is stratifiable. We will now answer this question negatively. However, the stratifiable space Y of our example is not a CW-complex and thus the following question still remains unanswered: Is \(K^X \) stratifiable whenever X is compact Hausdorff and K is a CW-complex? Whenever K is a countable CW-complex and X is compact metrizable we will however show that \(K^X \) is a cosmic space (hence \(K^X \) is hereditarily Lindelöf, thus paracompact, and hereditarily separable) whenever \(K^X \) has the pointwise topology or the compact-open topology.

We will also give a negative answer to the following question of Stone [9]: Is \(Y^1 \) a normal space whenever Y is compact Hausdorff and finite-dimensional (in the covering sense)?

Throughout we use the terminology of Kelley [6], except that all our topological spaces are T_1.

2. Theorems and proofs. Throughout this section, let I denote the closed unit interval.

Theorem 1. There exists a stratifiable space X such that \(X^I \) is not a normal space. Furthermore X is a 2-dimensional (in any sense—ind, Ind, dim) cosmic space.

Received by the editors January 8, 1965 and, in revised form, October 28, 1965.

1 This research was partially supported by the NSF Grant GP-4770.

2 For K a compact subset of X and V an open subset of Y, \(W(K, V) = \{f \in Y^X \mid f(K) \subseteq V\} \). A subbase for the compact-open topology in \(Y^X \) is the family of all \(W(K, V) \), with K compact and V open (\(K \subseteq X, V \subseteq Y \)).

3 A topological space X is a stratifiable space if X is T_1 and, to each open \(U \subseteq X \), one can assign a sequence \(\{U_n\}_{n=1}^\infty \) of open subsets of X such that, for all \(n \), \(U_1 \subseteq U, U_n \subseteq V_n \) whenever \(U \subseteq V \), and \(\bigcup_{n=1}^\infty U_n = U \). This definition is equivalent to Definition 1.3 in [3] (thus our stratifiable spaces are the same as the \(M^X \)-spaces of Ceder [3]).

4 A topological space X is cosmic if it is the continuous image of a separable metrizable space.
Proof. Let \(X = \{(x, y) \mid x \text{ and } y \text{ are real numbers and } y \geq 0\} \). For each \((x, 0) \in X\) and angle \(\alpha, 0 < \alpha < \pi \), let \(L(x, \alpha) \) be the ray through \((x, 0)\) lying in \(X\) whose angle of inclination with the positive \(x\)-axis is \(\alpha \). For each \((x, y) \in X\), with \(y \neq 0 \), and real number \(r > 0 \), let \(D((x, y), r) \) denote the circular disc centered at \((x, y)\) and with radius \(r \), and let \(C((x, y), r) \) denote the boundary of \(D((x, y), r) \).

Let \(X\) have the topology \(\tau \) with the following neighborhood system:

(a) If \((x, y) \in X\) and \(y \neq 0\), a neighborhood of \((x, y)\) is any \(D((x, y), r) \) with \(0 < r < y\).

(b) A neighborhood of \((w, 0) \in X\) is a set of the form \(N(w, \sigma, \partial) = S(w, \pi - \sigma, \partial) \cup \{(w, 0)\} \cup S(w, \sigma, \partial) \), where

\[
S(w, \alpha, \partial) = \{ (x, y) \in X \mid |x - w| < \partial, y < (x - w) \tan \alpha \}
\]

(where \(\partial > 0, 0 < \alpha < \pi \), and \(\alpha \neq \pi / 2 \)). Note that \(S(w, \alpha, \partial) \) is a region bounded by a right triangle, lying to the right of \((w, 0)\) if \(0 < \alpha < \pi / 2 \), to the left of \((w, 0)\) if \(\pi / 2 < \alpha < \pi \).

It is easily seen that \((X, \tau)\) is stratifiable. For each open \(U \subset X\) and positive integer \(n\), let \(U_n = U_n' \cup U_n'' \), where

\[
U_n' = \bigcup \{ D((x, y), 1/2n) \mid D((x, y), 1/n) \subset U \},
\]

\[
U_n'' = \bigcup \{ N(x, 1/2n, 1/2n) \mid N(x, 1/n, 1/n) \subset U \}.
\]

A simple argument shows that \((U_n')^{-} \subset U\). Obviously, \((U_n')^{-} \subset U\), \(U_{n=1}^\infty U_n = U \) and \(U_n \subset V_n \) whenever \(U \subset V \). Consequently \((X, \tau)\) is stratifiable (see footnote 1).

It is clear that \(\text{ind } X = 2\), and it can be seen that \(\dim X = 2 = \text{Ind } X \).

Letting \(Y = \{(x, y) \in X \mid y > 0\} \) and \(R = X - Y \) then both \(Y \) and \(R \) are separable metrizable subspaces of \(X \) and thus \(X \) is the one-to-one continuous image of the topological sum \(^6\) of \(Y \) and \(R \) (See Example 12.1 in [8]). Hence \(X \) is a cosmic space.

We will now show that \(X^I \) is not a normal space: Let \(F \) be the set of all functions \(f_x \in X^I \) (\(x \in X \)) such that \(f_x \) maps \(I \) in a “natural fashion” onto the arc \(C_x \) of the circle \(C((x, 1), 1) \) with unit length, and such that \(f_x(1/2) = (x, 0) \) (simply lay the unit interval \(I \) around \(C((x, 1), 1) \) so that the center of \(I \) coincides with the point \((x, 0)\)). Then

(a) \(X^I \) is not hereditarily separable (this was first observed by Professor E. A. Michael): \(F \) is a discrete subspace of \(X^I \) since

\[^5\] Actually one can show that \(X \) is \(M_1 \) (see Definition 1.1 in [3]) by the method of proof used in Example 9.2 of [3].

\[^6\] A topological space \(M \) is the topological sum of the family \(\{X_\alpha\}_{\alpha \in L} \) of topological spaces if \(M = \bigcup_{\alpha \in L} X_\alpha \times \{\alpha\} \) with \(X_\alpha \{\alpha\} \) homeomorphic to \(X_\alpha \) for each \(\alpha \in L \).
\[\{f_x\} = W(I, N(x, \pi/6, 1)) \cap W(\{0\}, S(x, S\pi/6, 1)) \cap W(\{1\}, S(x, \pi/6, 1)) \]
for each \(x \in X\). Since \(F\) is discrete and uncountable, \(X^I\) is not hereditarily separable.

(b) \(F\) is a closed subset of \(X^I\): By 2.4, 2.5 and 4.71 in [1], a net \(\{f_x\}_{x \in A}\) converges to \(h \in X^I\) if and only if \(\{f_x\}_{x \in A}\) converges continuously to \(h\). Hence, if \(\{f_x\}_{x \in A}\) converges continuously to \(h \in X^I\) then \(\{f_x(t)\}_{x \in A}\) converges to \(h(t)\) for each \(t \in I\), and thus \(h \in F\). (Let \(a = h(\frac{1}{2})\). By the definition of the functions \(f_x \in F\) it is clearly seen that for each \(t \in I\), \(\{f_x(t) | x \text{ is a real number}\}\) is a subset of a horizontal straight line. Thus one can easily see that \(h = f_a \in F\): Certainly, for each \(t \in I\), \(h(t)\) and \(f_a(t)\) are in the same horizontal line since \(h(t)\) is the limit point of the net \(\{f_x(t)\}_{x \in A}\); thus it is obvious that \(h(t) = f_a(t)\).)

(c) There exists a separable subspace \(Z\) of \(X^I\) which contains \(F\): For each pair \((r, t)\) of rational numbers with \(r < t\) and \(t - r < 1\), let \(f_{rt}\) be the function in \(X^I\) such that \(f_{rt}\) maps the closed interval \(I_r = [0, (1+r-t)/2]\) in a “natural fashion” onto the arc \(C_{r}\) of \(C((r, 1), 1)\) with length \((1+r-t)/2\) and \(f_{rt}((1+r-t)/2) = (r, 0)\). \(f_{rt}\) similarly maps \(I_t = [(1+r-t)/2, 1]\) onto the arc \(C_{t}\) of \(C((t, 1), 1)\) with length \((1+r-t)/2\) and \(f_{rt}((1+r-t)/2) = (t, 0)\), and \(f_{rt}\) maps \(I - (I_r \cup U_t)\) onto \(\{(x, 0) | r < x < t\}\) in a “natural fashion.”

Now let \(Z = F \cup D\), where \(D = \{f_{rt} \in X^I | r \text{ and } t \text{ are rational numbers, } r < t \text{ and } t - r < 1\}\). We show that \(D\) is a dense subset of \(Z\): Given any function \(f_x \in F\), let \(\{r(n)\}_{n=1}^\infty\) be a decreasing sequence of rational numbers converging to \(x\) and let \(\{q(n)\}_{n=1}^\infty\) be an increasing sequence of rational numbers converging to \(x\), such that \(r(1) - q(1) < 1\). Then the sequence \(\{f_{q(n)r(n)}\}_{n=1}^\infty\) of functions in \(D\) continuously converges to \(f_x\): Let \(\{t_r\}_{r \in C}\) be a net of points in \(I\) which converges to \(t \in I\). If \(t \neq \frac{1}{2}\) then \(f_x(t) \notin \{(x, 0) | x \text{ is a real number}\}\) and obviously the net \(\{g_n(t_r)\}\) converges to \(f_x\), where \(g_n = f_{q(n)r(n)}\) for each \(n\), since the subspace \(\{(x, y) \in X | y > 0\}\) of \(X\) is also a subspace of the cartesian plane with the usual topology. If \(t = \frac{1}{2}\), then \(f_x(t) = (x, 0)\) and one easily sees that \(\{g_n(t_r)\}\) converges to \(f_x(t)\) from the definition of the functions \(g_n\) and the neighborhood system of \((x, 0)\). Since \(D\) is countable then \(Z\) is separable.

(d) \(X^I\) is not a normal space: Let \(E\) be the closure of \(Z\) in \(X^I\). Then \(E\) is separable and contains a subset \(F\) of cardinality \(2^{\aleph_0}\) without a limit point in \(E\) (since \(F\) is a discrete closed subspace of \(X^I\)). By Theorem 1 in [5], \(E\) is not normal.

\footnote{The net \(\{f_x\}_{x \in A}\) converges continuously to \(h\) if the net \(\{f_x(y)\}\) converges to \(f(y)\) whenever the net \(\{y_t\}_{t \in C}\) converges to \(y\) (we omit the domain of composite nets).}
Consequently, \(X^I \) is not normal (\(E \) is a closed subspace of \(X^I \) which is not normal).

Theorem 2. Let \(K \) be a countable CW-complex and \(X \) a compact metrizable space. Then \(K^X \) is a cosmic space (see footnote 4) whenever \(K^X \) has the pointwise topology (or the compact-open topology\(^8\)).

Proof. Let \(M \) be the topological sum of the countable family \(\{C_n\}_{n=1}^\infty \) of finite subcomplexes of \(K \) (i.e. \(M = \bigcup_{n=1}^\infty C_n \times \{n\} \)). Then \(M^X = \bigcup_{n=1}^\infty C_n^X \), since \(X \) is compact, and hence \(M^X \) with the pointwise topology, or the compact-open topology, is separable metrizable, because of Theorem 1 in \[7].

Now we define a map \(f: M \to K \) by \(f(k, n) = k \) for each \((k, n) \in M \). Clearly \(f \) is continuous (indeed \(f \) is a quotient map). Then we define a map \(\phi: M^X \to K^X \) by \(\phi(h) = f \circ h \). Clearly \(\phi \) is an onto map. Furthermore \(\phi|C_n^X \) (the restriction of \(\phi \) to \(C_n^X \)) is a homeomorphism and \(M^X \) is the disjoint topological union of \(\{C_n^X\}_{n=1}^\infty \). Hence \(\phi \) is continuous whenever both \(M^X \) and \(K^X \) have the pointwise topology (or the compact-open topology).

Theorem 3. There exists a 2-dimensional (in the covering sense) compact Hausdorff space \(Y \) of weight\(^9\) \(2^{\aleph_0} \) such that \(Y^I \) is not a normal space.

Proof. Let \(X, F \) and \(Z \) be the spaces constructed in the proof of Theorem 1, and let \(Y \) be the Wallman compactification of \(X \) (since \(X \) is a normal space, \(Y \) is also the Stone-C\v{e}ch compactification of \(X \)—see Exercise T, p. 169, in \[6\] for pertinent definitions and results). Then \(Y \) has the same covering dimension of \(X \) (\(\dim X = 2 \)) and weight\(^9\) \(2^{\aleph_0} \) (since the topology of \(X \) is carried onto a base for the topology of \(Y \), the cardinality of the topology of \(X \) is \(2^{\aleph_0} \), and any base for the topology of \(X \) must contain some \(N(w, \sigma, \partial) \) for each real number \(w \)). Then we get that \(X^I \) and hence \(Z \) are subspaces of \(Y^I \).

We show that \(Z \) is an \(F_\sigma \)-subset of \(Y^I \): For each positive integer \(n \), let \(F_n = \{f_w \subseteq F | -n \leq w \leq n \} \). Then \(F_n \) is a closed subset of \(Y^I \)—we essentially repeat part (b) of the proof of Theorem 1 (keeping in mind that \(Y^I \) is Hausdorff (so nets converge to at most one point) and \(\{(x, y) | -n \leq x \leq n \} \) is a compact subspace of \(Y \) for each \(y \geq 0 \)). Then \(Z \) is the union of countably many closed subsets of \(Y^I \), since \(Z - F \) is

\(^8\) Actually, if \(K^X \) has the compact-open topology then a stronger version of Theorem 2 is already known—see Definitions 1.1 and 1.2, and results (I) and (J) of \[8\].

\(^9\) The weight of a topological space \(X \) is the minimum of the cardinal numbers of the open bases for the topology on \(X \).
countable, and hence Z is an F_σ-subset of Y^I. Consequently Y^I is not a normal space, since F_σ-subsets of normal spaces are normal and Z (an F_σ-subset of Y^I) is not a normal space.

Bibliography

8. ———, *\mathfrak{M}_0-spaces*, (to appear).

University of California, Davis