SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A NOTE ON SARD'S THEOREM IN BANACH SPACES

ROBERT BONIC

Suppose E and F are real Banach spaces, $f: E \rightarrow F$ is a C^1-map, and $Df(x)$ denotes the Fréchet derivative of f at x. A point $x \in E$ is called a critical point if the linear map $Df(x): E \rightarrow F$ is not surjective. In [2] Smale gave the following generalization of Sard's Theorem:

Theorem. Suppose $f: E \rightarrow F$ is a C^n-map $(n \geq 1)$, and $Df(x)$ is a Fredholm operator for each $x \in E$. Then

$$\dim(\ker Df(x)) - \dim(\coker Df(x)) = \text{index}(f)$$

does not depend on x, and if $n > \text{index}(f)$, then the image under f of the critical points is a set of first category.

Kupka [1] showed that the Fredholm assumption on the derivatives is essential. His example of a real valued function is fairly involved. The purpose of this note is to point out that a very simple example of the same phenomenon can be given if we do not insist that the function be real valued.

Example. Let E denote all real valued continuous functions on $[0, 1]$, and suppose that $f: E \rightarrow E$ is defined by $f(x) = x^3$. Then f is of class C^{∞}, in fact $Df(x)h = 3x^2 h$, and $D^n f = 0$ when $n \geq 4$. From the formula for $Df(x)$ it follows that x is a critical point iff x vanishes at some point. Moreover a critical point is an interior point of the set of critical points iff it takes on both positive and negative values. Clearly f maps the set of critical points onto itself, and the interior points onto the interior points. Hence the image of the critical points contains an open set.

Bibliography

Northeastern University

Received by the editors March 14, 1966.

1 Research supported in part by N.S.F. Grant GP 5619.

1218