Degree of approximation by polynomials to functions of bounded variation
HTML articles powered by AMS MathViewer
- by Hassoon S. Al-Amiri
- Proc. Amer. Math. Soc. 17 (1966), 984-991
- DOI: https://doi.org/10.1090/S0002-9939-1966-0199410-X
- PDF | Request permission
References
- Hassoon S. Al-Amiri, The $a$-points of Faber polynomials, Bull. College Sci. (Baghdad) 8 (1965), 1–25 (English, with Arabic summary). MR 224781
- Georg Faber, Über polynomische Entwickelungen, Math. Ann. 57 (1903), no. 3, 389–408 (German). MR 1511216, DOI 10.1007/BF01444293
- Dunham Jackson, The theory of approximation, American Mathematical Society Colloquium Publications, vol. 11, American Mathematical Society, Providence, RI, 1994. Reprint of the 1930 original. MR 1451140
- W. E. Sewell, Degree of approximation by polynomials to continuous functions, Bull. Amer. Math. Soc. 41 (1935), no. 2, 111–117. MR 1563032, DOI 10.1090/S0002-9904-1935-06029-X
- J. L. Walsh and W. E. Sewell, Sufficient conditions for various degrees of approximation by polynomials, Duke Math. J. 6 (1940), 658–705. MR 2592, DOI 10.1215/S0012-7094-40-00651-2
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 984-991
- MSC: Primary 30.70
- DOI: https://doi.org/10.1090/S0002-9939-1966-0199410-X
- MathSciNet review: 0199410