
DEGREE OF APPROXIMATION BY POLYNOMIALS
TO FUNCTIONS OF BOUNDED VARIATION1
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1. Introduction. Let P(s) be analytic in the interior of a Jordan

curve C, continuous in the closed region. For a point ZoEIiQ, P'(z)

is uniquely determined. However, for z0 on C we define P(z0) as

limE..»0((.F(z) — F(z0))/(z — z())), z on C provided this limit exists. De-

rivatives of higher orders are defined similarly. The subclass of the

above functions, where F(p)iz) are of bounded variation on C will be

designated throughout as Bip, C). The concept of bounded variation

is assumed. Note that if FEBip, C), where C is a rectifiable Jordan

curve, then FEBiq, C), q = 0, 1, • • • , p — l; also every analytic

function over a rectifiable Jordan curve is of bounded variation there.

When C is an analytic Jordan curve (analytic), G. Faber [2]

proved that analytic functions can be expanded in /(C) by an infinite

series of certain polynomials known as Faber polynomials—§3.

The object of this paper is to obtain the degree of approximation of

such series to functions in Bip, C) (Theorem 1). In Lemma 2, §2 an

estimate of the Taylor coefficients for functions in Bip, C) where C

is \z\ =1 is obtained. This estimate is employed in obtaining an

estimate on the corresponding Faber coefficients in case C is analytic

(Lemma 3, §4). Lemma 4, §5 gives an estimate on the Faber poly-

nomials associated with the analytic curve C. Both Lemmas 4 and

5 are used in proving Theorem 1. Two related results, Theorem 2

and Theorem 3, are stated in §7 but only the latter is proved.

A similar problem was solved by W. Sewell [4] in which the class

of functions was subjected to different hypotheses, mainly that their

pth derivatives satisfy a Lipschitz condition of order a on C, 0 <a ^ 1.

2. Taylor coefficients. First we mention a Corollary of D. Jackson

[3, p. 50].

Corollary (Jackson). Let Fix) be a real-valued function of the

real variable x of period 2ir. Let P(p)(x), p^O, exist and be of bounded

variation over a period. Then for k>0

\bk\  ^ ViF^)/2irkp+i,        \ck\   g ViF^)/2wkp+\
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where bk and ck are the kth coefficients of the Fourier series corresponding

to F(x) on a period, i.e.,

co

F(x) ^ b0/2 + Y (bk cos kx + ck sin kx).
i

V(G) means, throughout, the total variation of G.

The above corollary can be extended to include the case where

F(x) is a complex-valued function of the real variable x. This can be

accomplished easily if the above corollary is applied to the real and

the imaginary parts of F(x).

Lemma 1. Let F(x) be a complex-valued function of the real variable

x of period 2ir. Let F<-p)(x), p^O, exist and be of bounded variation over a

period. Then for k>0,

(1) | h |  g V(F^)/irkp+\        \ck\  ■= V(F^)/irkp+\

Lemma 2. Let FEB(p, Q, where C is the circle |a| =1, p^O. Let
G(6)=F(ei«), and F(z) = Yo ikZk. Then

(2) ! ak |   = V(G^)/kp+l.

Proof. Considering F(eiB) — G(8) as a function of 6 it follows that

bk - ick        1    C2T
-= —: I     F(ei6)(cos kd - i sin kd) dO

2 2iri J o
(3)

l   r     F(z)
=- I        -dz = ak,

2iriJ |j|=i zk+1

where bk and Ck are the Fourier coefficients corresponding to G(6).

Since FEB(p, C), C is \z\ =1, then by chain differentiation of G(d)
= F(ea), G(p)(6) is of bounded variation over C. Combining (1) and

(3) yields (2).

3. The Faber theorem. Let C be an analytic curve in the z-plane

and A(C) be its exterior. There is a unique analytic function f(z)

which maps ^4(C) in a 1-1 manner onto the exterior of a circle

|to| =p, designated as Kp, such that the points at infinity correspond

to each other and its power series about z = oo has the normalization

w=f(z) =zArdoArdi/z-\- • ■ • . Because/(a) is schlicht there exists a

unique inverse schlicht function g(w) in A(K„) whose power series

expansion about to= oo is z = g(w)=wA-e0Arei/wAr • • ■ , with

lim sup |e„| 1/n = p, p<p.

Because of the analyticity of C, there is a minimum number p0,
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p^Po<p, for which g(w) is still schlicht in AiKP0). Let CP0 be the level

curve in the z-plane corresponding to the circle KPo under w=fiz).

Note that Cis Cp. The Faber polynomials }/„(z)}, w = 0, 1, 2, • • • are

the polynomial parts of the formal expansion of (f(z))n about z= oo.

In the sequel/(z), g(w) and/„(z) will be used in the above contexts.

It is easily seen that

(4) fniz) = — -dt,
2ttiJcr   t — z

where zEIiC/) with an appropriate choice r>p0; see e.g. [l, p. 6].

Faber proved the following theorem.

Theorem (Faber). Let Fiz) be analytic in /(C), C an analytic

curve. For zG/(C)

(5) Fiz) = £ akfkiz),
o

where {/*(z)} are the Faber polynomials associated with C. Here

i  r   Figiw))
(6) ak = — I       -—- dw,

2lTl J Kp, W +

for po<pi<p. The series in (5) converges uniformly in any closed subset

of no.
The coefficients in (5) are referred to as Faber coefficients.

4. Faber coefficients. The following lemma provides an estimate

on Faber coefficients.

Lemma 3. Let FEBip, C), C an analytic curile. Then for k>0, p^O,

(7) | ak |   = ViG^)/pkkp+l

where GiO)=zZo iakpk)eiM, 0^.6^2ir, and [ak\ are the Faber coeffi-

cients associated with F{z) in /(Cp).

Proof. Since g(w) is schlicht, Figiw)) is analytic in p0 <p' ^ | w\ <p

and continuous in the closure of this annular ring. It is clear from (6)

that the Laurent series of Figiw)) in po<p'^ \w\ <p is

oo X

(8) Figiw)) = zZ akw" + zZ A-t/vt,
o l

where ak are the Faber coefficients associated with P(z) in Z(C„).

Let aiw) = — zZi A_k/wk, )3(to) = Figiw)). Define



i966] DEGREE OF APPROXIMATION BY POLYNOMIALS 987
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(9)   \(w) = a(w) + /3(w) for w on K„ and \(w) = Y a*w* for | to |  < p.
0

ThusX(w) is analytic in I(KP) and continuous in I(KP). From (8) and

(9) X(w) =a(w) A-8(to), p'^|to| ^p. Let w=py. Then X(w) =X(py)

= <I>(y) for |y| ^1 and

CO

(10) <%) = Y(akPk)yk,        \y\  < l.
0

By chain differentiation of B(w) where z = g(w) it is readily seen that

(3(p)(w) is of bounded variation on Kp. Thus ~KEB(p, Kp) and since

^w(y)=pp\(pi(w), <t>EB(p, Ki). Let G(0) =$(e<») for Og0^27r.

Since G(0) is periodic of period 27r, continuous and of bounded

variation over the interval [0, 27r], it follows from [6, pp. 175-180]

that G(6) =Yo (ikPk)eike. From (2) and (10) it follows \akpk\

g V(G^)/kp+\ thus \ak\ ^ V(G^)/Pkkp+1.

5. Faber polynomials. The following lemma provides an estimate

on Faber polynomials.

Lemma 4. Let C be an analytic curve. Then

(11) fk(z) = (f(z))k(l A-GP1-6k(z))

for zEA(Cf,A and pi a fixed number satisfying pi>p0; Gn is a real

constant independent of k and z but dependent on pi. The function 9k(z)

is analytic in A(CP1) and \dk(z)\ ^(p2/pi)K for zEA(CPl), k>0, where

p2 is a definite fixed number with p0<p2< pi. Also for z on CP',p'^pi

(12) \fk(z)\   < (1A-Gpi)p'k.

Proof. Let pi be a fixed number such that pi>p0 and let p2

= (pi+Po)/2. For an arbitrary but fixed point zEA(CpA, choose pi

large enough, so that zEI(CpA and formula (4) holds for r = p3. Thus

...     ir   (f(t))k ,f   ,,MVk,   i  r   (/«)*,
fk(z) = —- I      -dt = (f(z))k + — I      -dt.

liri J cPs   t — z 2m J cP1   t — z

We put the above in a different form

/*(*) = (/d))*(i + /*(*)),
where

/*(«)= — )     (—)-dt.
2mJ cPi\f(z)/    t — z
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Note that the maximum of | Ikiz) \ is attained on CP1 since the

function is analytic in the closed exterior of the curve and

lim^„ /fc(z)=0. Thus for zG^4(CPl),

i          i        ! / P2\k         L
max | hiz) \  2= — I — j->

2ir \ pj   diCP1, Cf,,)

where L is the length of Cn and diCn, CPi) is the minimum distance

between CPl and CPS. Let

/ hiz)
GP1 =-    and    0*(z) = - •

2irdiCn, Cp/) G

Then formula (11) follows from substituting for Ikiz) in the equa-

tion of /*(z) above. For z on Cp<, p'sSpi it follows that |0*(z)|

^(p2/pi)*<L Thus formula (12) is proved.

6. The main theorem. Lemmas 3 and 4 yield:

Theorem 1. Let FEBip, C), where C is an analytic curve and p ^ 1.

Then for zEIiQ, n>0,

" Q-ViG^)
(13) max  Fiz) - zZ «*/*(z)   ^-"-

o pnp

where zZo akfkiz) is the usual Faber series for Fiz) in /(C) and Q is

a constant independent of p, n and z but dependent on p, and F(G(p))

is the total variation of G(0) on [0, 2ir] and G(0) = zZo   iakpk)eik$.

Proof. First we will show that the Faber series converges to P(z)

in 7(C). provided FEBip, C), where C is an analytic curve—see §3.

Consider

n+m n+m

| S„+m(z) - Sniz) |   =    zZ dkfkiz)    ^ IZ  I a* I I /*(z) I
n+l n+l

for z on C, where S„(z) = zZo o-hfkiz). Let p be pi in Lemma 4. Then

(7) and (12) for z on C yield

max\Sn+miz)-Sniz)\   =g    zZ      " (1 + G/)Pk
k=n+l      Pkkp+1

< (1 + GP)VjG^) rx _<*«_

IT Jn       to**1

_ (1 + Gp)VjGW)

ir/>rap+1
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By the maximum principle, for zEI(C),

.                                   (I A-Gp)V(G<pA
Sn+m(z) — 5„(a) \  g-> 0,    as n —> oo.

By Cauchy's convergence principle {Sn(z)} converges uniformly to a

function analytic in 1(C) and continuous in 7(G), say H(z). Let

K(z) = F(z) -H(z). Since F_(z) =H(z) in /(C), it follows that K(z) =0

in /(G) and continuous in 7(C). Let z0 be any fixed point on C. Since

G is analytic Jordan curve and -K(z) is continuous in 1(C), it follows

that limz+I0 /C(z)=X(zo)=0 for zEI(Q. Thus X(«)sO in 7(C)

which implies S„(z)—>F(z) uniformly in 1(C). For a on C

n co

max F(z) — X] a*/Uz)   = max X)  I a* I " l/*(2) I
0 n+1

^ (l + Gp)7(Gf))^     1

nTl    k*+*

(1 A-G„)V(G^)  r™   du

■K Jn       W+1

_ QV(G<*>)
pnp

where C = (l+Gp)/7r. By the maximum principle (13) is achieved

and so the main theorem is proved.

7. Related results. The method used in proving Theorem 1 can be

employed again to show:

Theorem 2. Let FEB(p, C), where C is an analytic curve and pstl.

Let X^o° akfk(z) be the Faber series of F(z) in /(G). Let pi, be a fixed

number satisfying p0<pi<p. Then for n>0 and zEI(CP1)

max F(z) — 2^am(z)   <-( — ]
o pnp        \ p /

where Qi is a constant independent of p, n, and z in I(CPl) but dependent

on pi and G(6) = £0" (akpk)eik6,for 0 on [0, 2tt].

Theorem 3. Assume the same hypotheses as for the previous theorem.

Let Pn(z) be the polynomial of degree n found by interpolation to F(z)

in the roots of the Faber polynomial fn+i(z). Then for n sufficiently large

and zEI(CPl)

max | F(z) - Pn(z) |  ^-( — )     ,
pnp       \ p/
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where Q2 is a constant independent of p, ra and z but dependent on p\.

The following Theorem due to Sewell and Walsh [5] is needed in

the proof of Theorem 3.

Theorem (Sewell and Walsh) . Let Fiz) be an analytic function

in the interior of an analytic curve C and continuous in its closure. Let

Zi, i = l, 2, ■ ■ ■ , ra + 1 be in /(C) and P„+i(z) — H"+1 iz — z/). Let

Pniz) be the polynomial of degree ra found by interpolation to Fiz) in

the points Zi, i—1, 2, ■ ■ ■ , ra + 1. Then

1    r  Rn+iiz) Fit) - Sniz)
(14) Fiz) - Pniz) = —       -^r1-—-—dt,

2m J c Rn+iit) t — z

where 5„(z) is an arbitrary polynomial of degree ra.

Proof of Theorem 3. Let p2 = (pi+p0)/2. The first part of Lemma

4 yields
fn+liz)

«GJ(0   (/(z))n+1

Thus there exists a positive integer ra0 such that for w^ra0

/»+i(z)        *   ^,n
max-1   < 1/2,

.eJ(C)   (/(z))"+1

which implies that for such sufficiently large ra, /»+i(z) has no zeros

in AiC). The Sewell and Walsh Theorem is applicable now when Zi,

i = l, 2, ■ ■ • , ra + 1, are chosen to be the zeros of /n+i(z), raSrrao,

P„+i(z), S„(z) = zZl°-kfkiz). Hence (14) becomes

(15) Fiz) - Pniz) = — I    ——■-dt
2lTl J C   fn+lit) t  —  Z

for zEIiC). For z on C formula (11) yields

min | Uiiz) |   ^ p»+l | 1 - Gpfa+iiz) |   ^ P«+72

for ra^ra0. The above lower bound and (12) yield

(16) max f-^-   ^ 2(1 + GPl)(p,/p)»+\
fn+lW

for ra^Wo where the maximum is taken over Z on C and z on CPl.

Formulas (15) and (16) and Theorem 1 yield

QLViG™)
max   Fiz) - Pniz)    £ 2(1 + GP1)(Pi/p)«+1-^-,

2ir8pnp
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where L is the length of C, 5 is the minimum distance between C and

Cn. Let C/2 = C'Z<(l+Gp1)/7rS. Then Theorem 3 is concluded.
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