A class of naturally partly ordered commutative archimedean semigroups with maximal condition
HTML articles powered by AMS MathViewer
- by E. J. Tully
- Proc. Amer. Math. Soc. 17 (1966), 1133-1139
- DOI: https://doi.org/10.1090/S0002-9939-1966-0202871-0
- PDF | Request permission
References
- A. H. Clifford, Naturally totally ordered commutative semigroups, Amer. J. Math. 76 (1954), 631–646. MR 62118, DOI 10.2307/2372706
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- E. S. Lyapin, Normal complexes of associative systems, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 179–192 (Russian). MR 0034372
- Takayuki Tamura, Commutative nonpotent archimedean semigroup with cancelation law. I, J. Gakugei Tokushima Univ. 8 (1957), 5–11. MR 96741 —, Construction of commutative archimedean semigroups, Proceedings of the Conference on Algebraic Theory of Machines, Languages and Semigroups, Asilomar, Pacific Grove, California, 1966 (to appear).
- Takayuki Tamura and Naoki Kimura, On decompositions of a commutative semigroup, K\B{o}dai Math. Sem. Rep. 6 (1954), 109–112. {Volume numbers not printed on issues until Vol. 7 (1955)}. MR 67106
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 1133-1139
- MSC: Primary 06.70; Secondary 20.00
- DOI: https://doi.org/10.1090/S0002-9939-1966-0202871-0
- MathSciNet review: 0202871