A note on extremal problems for certain classes of analytic functions
HTML articles powered by AMS MathViewer
- by W. E. Kirwan
- Proc. Amer. Math. Soc. 17 (1966), 1028-1030
- DOI: https://doi.org/10.1090/S0002-9939-1966-0202995-8
- PDF | Request permission
References
- G. M. Goluzin, On a variational method in the theory of analytic functions, Amer. Math. Soc. Transl. (2) 18 (1961), 1–14. MR 0124491, DOI 10.1090/trans2/018/01
- J. A. Hummel, A variational method for starlike functions, Proc. Amer. Math. Soc. 9 (1958), 82–87. MR 95273, DOI 10.1090/S0002-9939-1958-0095273-7
- Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–185 (1953). MR 54711
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- J. A. Pfaltzgraff, Extremal problems and coefficient regions for analytic functions represented by a Stieltjes integral, Trans. Amer. Math. Soc. 115 (1965), 270–282. MR 199379, DOI 10.1090/S0002-9947-1965-0199379-1
- M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236–253. MR 142756, DOI 10.1090/S0002-9947-1963-0142756-3
- K\B{o}ichi Sakaguchi, A variational method for functions with positive real part, J. Math. Soc. Japan 16 (1964), 287–297. MR 177111, DOI 10.2969/jmsj/01630287
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 1028-1030
- MSC: Primary 30.52
- DOI: https://doi.org/10.1090/S0002-9939-1966-0202995-8
- MathSciNet review: 0202995