A theorem on recursively enumerable classes and splinters
HTML articles powered by AMS MathViewer
- by Paul R. Young
- Proc. Amer. Math. Soc. 17 (1966), 1050-1056
- DOI: https://doi.org/10.1090/S0002-9939-1966-0207556-2
- PDF | Request permission
References
- J. C. E. Dekker and J. Myhill, Some theorems on classes of recursively enumerable sets, Trans. Amer. Math. Soc. 89 (1958), 25–59. MR 97310, DOI 10.1090/S0002-9947-1958-0097310-7
- Richard M. Friedberg, Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication, J. Symbolic Logic 23 (1958), 309–316. MR 109125, DOI 10.2307/2964290
- Marian Boykan Pour-El and William A. Howard, A structural criterion for recursive enumeration without repetition, Z. Math. Logik Grundlagen Math. 10 (1964), 105–114. MR 168457, DOI 10.1002/malq.19640100802
- Marian Boykan Pour-El and Hilary Putnam, Recursively enumerable classes and their application to recursive sequences of formal theories, Arch. Math. Logik Grundlag. 8 (1965), 104–121 (1965). MR 207555, DOI 10.1007/BF01976264
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 17 (1966), 1050-1056
- MSC: Primary 02.70
- DOI: https://doi.org/10.1090/S0002-9939-1966-0207556-2
- MathSciNet review: 0207556