EQUIVALENCE OF TAMELY RAMIFIED ν-RINGS

NICHOLAS HEEREMA

1. Introduction. Let R be a ν-ring, that is, an unramified complete discrete valuation ring of characteristic zero with residue field k having characteristic $p \neq 0$. Let R_e and R'_e be totally ramified extensions of R of degree e. The symbol H represents the natural map of a local ring onto its residue field. We say that an automorphism $\tilde{\tau}$ on k lifts to an automorphism τ on R_e, and τ induces $\tilde{\tau}$, if $H\tau = \tilde{\tau}H$. In this note we shall prove the following theorem and a number of corollaries.

Theorem 1. Assume that $(e, p) = 1$ and let π and $\pi' = \nu$ be prime elements of R_e and R'_e respectively. Then we have $\pi = \pi' \nu = \pi' \nu'$ where u and u' are units in R_e and R'_e. If $\tilde{\tau}$ is the automorphism on k induced by the isomorphism $\tau : R_e \to R'_e$ then $H(u'^{-1})\tilde{\tau}H(u)$ has an eth root in k. Conversely, if $\tilde{\tau}$ is an automorphism on k such that $H(u'^{-1})\tilde{\tau}H(u)$ has an eth root in k then there exists an isomorphism τ of R_e onto R'_e such that τ induces $\tilde{\tau}$. Moreover, τ can be chosen so that $\tau(R) = R$.

We shall discuss a number of corollaries of Theorem 1 and defer the proof of the theorem.

Corollary 1. An automorphism $\tilde{\tau}$ on k lifts to an automorphism of R_e if and only if $H(u'^{-1})\tilde{\tau}H(u)$ has an eth root in k.

Corollary 2. If the automorphism $\tilde{\tau}$ on k lifts to an isomorphism τ of R_e onto R'_e then $\tilde{\tau}$ lifts to an isomorphism of R_e onto R'_e which maps R onto itself.

Let G denote the automorphism group of R_e with identity mapping ϵ. Let $G_t = \{ \alpha \mid \alpha \in G, \alpha - \epsilon(R_e) \subset \epsilon^t R_e \}$ and $H_t = \{ \alpha \mid \alpha \in G_t, \alpha - \epsilon(\Pi) \subset \epsilon^{t+1} R_e \}$.

It is well known and not difficult to show that if $(e, p) = 1$ then $H_t = G_t$ for $t > 1$. Thus, in this case we have the extended chain of ramification groups

Received by the editors July 24, 1965.

1 This research was supported by NSF GP-4007.
All the factors of (1) save G/G_1 are evaluated in [1, Theorem 5]. Also, see [3, Theorem 6 and Corollary]. As an immediate consequence of Corollary 1 we have

Corollary 3. The group G/G_1 is isomorphic to the group of all automorphisms $\bar{\tau}$ on k such that $H(u)^{-1}\bar{\tau}H(u)$ has an eth root in k.

It was shown in the middle thirties (for a discussion, see MacLane [3, p. 423]) that an unramified v-ring is determined by its residue field. A long standing question has been the following—can one characterize the isomorphically distinct rings R_e in terms of the structure of the residue field k and if so, how? In the tamely ramified case, $(e, p) = 1$, the answer is yes and the solution is given by [1, Theorem 3] in the case in which k is perfect. Corollary 4 below yields the same conclusion without restriction on k.

As in [1, p. 495] we consider the equivalence relation "\sim_e" on k^*, the nonzero elements of k, in which $a \sim_e b$ if there is an automorphism $\bar{\tau}$ on k such that $a^{-1}\bar{\tau}(b)$ is in k^e, the set of eth powers in k^*. Let $[a]$ represent the equivalence class containing a and let E be the set of all classes $[a]$.

Corollary 4. The rings R_e and R'_e of Theorem 1 are isomorphic if and only if $[H(u)] = [H(u')]$, thus the mapping $R_e \to [H(u)]$ induces a one to one correspondence between classes of isomorphic rings R_e and E.

Proof. The first sentence follows immediately from Theorem 1. Thus the mapping $R_e \to [H(u)]$ is well defined, a fact which can be observed directly. Given $a \in k^*$ choose u in R such that $H(u) = a$. Thus $R_e = R(\pi)$, where π is a root of $x^e - pu$, maps onto $[a]$. Thus the induced mapping is onto.

II. **Proof of Theorem 1.**

Lemma 1. Let R_e and R'_e be tamely ramified extensions of R and let $\tau: R_e \to R'_e$ be an isomorphism which induces the automorphism $\bar{\tau}$ on the residue field k. Then there exists an isomorphism $\eta: R_e \to R'_e$ such that $\eta(R) = R$ and $\eta = \bar{\tau}$.

Proof. Since every automorphism on k lifts to R there is an automorphism α on R such that $\alpha = \bar{\tau}^{-1}$. Then $\tau\alpha: R \to R'_e$ has the property $\tau\alpha - \epsilon(R) \subset \pi'R'_e$. Thus, by [2, Theorem 4] $\tau\alpha$ can be extended to an automorphism β on R'_e such that $\beta - \epsilon(R'_e) \subset \pi'R'_e$. Now $\tau^{-1}\beta(R) = \tau^{-1}\tau\alpha(\bar{\tau}) = R$. Let $\eta = \beta^{-1}\tau$. Then we have $\eta(R) = R$ and $\eta = \bar{\tau}^{-1}\tau = \bar{\tau}$.
Now, let \(\tau: R_e \to R'_e \) be an isomorphism. By Lemma 1 there exists an isomorphism \(\eta: R_e \to R'_e \) such that \(\eta(R) = R \) and \(\eta = \tau \). It follows from Theorem 3 of [1, p. 494] that \(H(u'^-1)\tau H(u) \) is in \(k^* \). The converse follows immediately from the same Theorem [1, Theorem 3] and the fact that every automorphism on \(k \) lifts to \(R \).

III. An example. Again we assume that \((e, p) = 1 \).

Using product as the operation we write \(k_e \) for the group \(k^*/k_e \). The automorphisms of \(k \) induce a group \(G \) of automorphisms on \(k_e \). Let \(\phi \) represent the natural map of \(k^* \) onto \(k_e \). For \(x \) in \(k_e \) let \([x]_a\) denote the set of elements in \(k_e \) conjugate to \(x \) with respect to \(G \). We state without proof.

Proposition 1. Let \(a \) be in \(k^* \). The correspondence \([a] \to [\phi(a)]_a\) is a one to one correspondence between \(E \) and the classes of conjugate elements in \(k_e \) with respect to \(G \).

We consider the case in which \(k = GF(p^r) \), the field with \(p^r \) elements. Let \(n = (e, p^r - 1) \). Then for any \(b \) in \(k^* \), \(a \sim_b b \) if and only if \(a \sim_n b \). Also \(k_e \) is the cyclic group of order \(n \). Since all elements in a given conjugate class have the same order it follows that the number of conjugate classes is

\[
\sum_{q \mid n} \frac{\phi(q)}{I(q)}
\]

where \(\phi \) is the Euler \(\phi \) function and \(I(q) \) is the least positive integer \(s \) such that \(q \mid p^r - 1 \). We also require that \(\phi(1) = I(1) = 1 \). Thus, if \(N(e, k) \) is the number of isomorphically distinct rings \(R_e \) with residue field \(k \), we have,

\[
N(e, GF(p^r)) = \sum_{q \mid (e, p^r - 1)} \frac{\phi(q)}{I(q)}.
\]

In particular, if \((e, p^r - 1) = 1 \), \(N(e, GF(p^r)) = 1 \), and if \((e, p^r - 1) \mid p - 1 \)

\[
N(e, GF(p^r)) = \sum_{q \mid (e, p^r - 1)} \phi(q).
\]

Finally we note that the automorphisms on \(k \) which lift to \(R_e \) in the tamely ramified case are exactly those automorphisms \(\alpha \) such that \(\phi H(u) \) is left fixed by the mapping \(\alpha \) induces on \(k_e \). Thus every automorphism on \(GF(p^r) \) lifts to \(R_e \) if and only if \((e, p^r - 1) \mid p - 1 \).
References

3. S. MacLane, Subfields and automorphism groups of p-adic fields, Ann. of Math. 40 (1939), 423-442.

Florida State University