COMMUTATIVE, NOETHERIAN RINGS OVER WHICH EVERY MODULE HAS A MAXIMAL SUBMODULE
ROSS M. HAMSHER

In [1, p. 470] Professor Hyman Bass mentions the following conjecture: a ring R is left perfect if, and only if, every nonzero left R-module has a maximal submodule and R has no infinite set of orthogonal idempotents. If a ring R is right or left noetherian, then R has no infinite set of orthogonal idempotents. We shall show that for commutative, noetherian rings Bass' conjecture is true.

Lemma. If R is a commutative ring over which every nonzero module has a maximal submodule, then every proper prime ideal of R is maximal.

Proof. Let P be a proper prime ideal of R so $S = R/P$ is an integral domain over which every nonzero module has a maximal submodule. Let sQ be a nonzero, injective S-module. Then sQ has a simple epimorphic image, say S/M where M is a maximal ideal of S. If $m \in M$ and $m \neq 0$, then, being the quotient of an injective module, S/M is divisible, and there is an $s \in S$ with $m(s + M) = ms + M = 1 + M$. Hence $1 \in M$, a contradiction. Thus $M = 0$, and S is a field.

If RM is an R-module, then RM is R-projective if for each epimorphism $\sigma : R \rightarrow C$ and each homomorphism $\pi : R \rightarrow C$, there is a homomorphism $\tau : RM \rightarrow R$ such that $\tau \sigma = \pi$. We call a ring R a test module for projectivity if every R-projective module is projective.

Theorem 1. Let R be a commutative, noetherian ring. Then the following are equivalent.

(i) R is a test module for projectivity,
(ii) every nonzero R-module has a maximal submodule, and
(iii) R is artinian.

Proof. (iii) ⇒ (i). As Professor Barbara L. Osofsky shows in [3], this implication follows from Sandomierski [4, Theorems 4.1 and 4.4].
(i) ⇒ (ii): Every nonzero projective module has a nonzero homo-
morphic image in a cyclic. If a module M has no nonzero homomorphic image in a cyclic, M is trivially R-projective so by (i) M is projective and $M = 0$. Thus, if M is a nonzero module, there exists a nonzero homomorphism σ of M to a cyclic. Then $\text{Im} \sigma$ is finitely generated, so $\text{Im} \sigma$ has a maximal submodule, and so must M.

(ii) \Rightarrow (iii). It suffices to show that R is perfect by a remark in Bass [1, p. 475]. Since R has no infinite set of orthogonal idempotents, R is perfect if every nonzero R-module has a simple submodule [1]. Let M be a nonzero R-module with $m \in M$, $m \neq 0$. Select a maximal ideal from $\{(0:rm) : r \in R, rm \neq 0\}$, say $(0:sm)$. Suppose that $ab \in (0:sm)$, but $a \notin (0:sm)$. Then $asm \neq 0$ and $(0:sm) \subset (0:asm)$ imply $(0:sm) = (0:asm)$. This shows that $b \in (0:sm)$, and $(0:sm)$ is a proper prime ideal of R. By the lemma $(0:sm)$ is maximal so Rsm is simple.

Theorem 2. A commutative ring R is perfect if, and only if, every nonzero R-module has a maximal submodule and R/J (where J is the Jacobson radical of R) satisfies the ascending chain condition on the annihilators of principal ideals.

Proof. Clearly if R is perfect the second part of the theorem holds; see [1]. Conversely, if the second part of the theorem holds, then by a remark in [1, p. 470] to show R is perfect it suffices to show that R/J is semi-simple artin. The condition on annihilator ideals implies that R/J has no infinite set of orthogonal idempotents. Then using the obvious modification of the technique in (ii) \Rightarrow (iii) above, we obtain that R/J is an essential extension of its socle. Thus R/J is semi-simple artin.

References