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A SELECTION THEOREM

E. MICHAEL1

1. Introduction. The following theorem was proved in [l, Footnote

7 ]. (A function <b from X to the collection 2B of nonempty closed subsets

of B is called lower semicontinuous ( = l.s.c.) if {xGX: <bix)r\V^0\

is open in X whenever V is open in B, while TbA denotes the closed

convex hull of A in B.)

Theorem 1.1 [l]. If X is paracompact, if B is a Banach space, and

if 4>: X—>2B is l.s.c., then there is a continuous f: X—>F such that

fix)EYB<pix) for every xEX.

As was pointed out in [l, p. 364], Theorem 1.1 remains true if B

is any complete, metrizable locally convex space, but it is generally

false if B is not metrizable. We can, however, prove the following

generalization of Theorem 1.1.

Theorem 1.2. Let X be paracompact, and M a metrizable subset of a

complete2 locally convex space E. Let <b: X—>2M be l.s.c. and such that,

for some metric on M, every r/>(x) is complete. Then there exists a con-

tinuous f: X—>P such that fix) ETE<t>ix) for every xEX.

Theorem 1.2 was proved in [3] under the stronger assumption that

X is metrizable. While that was sufficient for the applications in [3],

and probably for most other applications, it did not generalize

Theorem  1.1, and was therefore never entirely satisfying.  In this
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paper, some machinery is created in §2 which enables us to prove

Theorem 1.2 in full generality.

2. Two lemmas. Let M be a metric space with metric p, and P the

linear space of real-valued Lipschitz functions on X. As was shown

in [4], there is a Banach space B containing M isometrically, and a

linear map /—>/* from L to the dual space of P, such that/*| M=f

for all fEL.
For each fEL, let s(f)= {xEM: f(x) 9*0}~. For each yEB, let

S(y) = {U EM: U open, f*(y) = 0 whenever/G L and s(f) E U},

and let o(y) = M—\J$(y). Clearly (r(y) is closed.

The following lemmas are not the sharpest results possible, but

they suffice for our purposes.

Lemma 2.1. Suppose that KEM is compact, and that yELBK. Then

(a) o(y)EK.

(b) If fEL, and a(y)CAs(f) = 0, thenf*(y)=0.
(c) o(y)9*0.

Proof, (a) Let U = M—K. Then/*(y)=0 whenever s(f)EU, so

UEHy) and hence a(y) EK.

(b) Since/=/+—/~, where/4" 5:0 and/~^0 and both are in L, we

need only prove (b) for/^0.

Let A =s(f)C\K. Then A is compact and disjoint from a (y), so it

can be covered by open F.CA (» = 1, • • • , w) such that F.CPi for

some P,GS(y). Let gt(x) =p(x, X— VA for all xEM. Then giGP and

s(gi)EUi, so gi*(y) =0. Let g=Y"-igi- Theng*(y)=0. Nowg(x)>0
when xG^4, so there is an a>0 such that 0^/(x) f^ag(x) for all xEA,

and therefore for all xEK since/(x) =0 if xEK — A. Hence 0^/*(y)

gag*(y)=0.

(c) Let h(x) = l for all xEM. Then hEL and h*(y) = l, so a(y)

C\s(h) 9*0 by (b). Hence a(y) 9*0, and that completes the proof.

Now let H = \\{TBK: KEM, K compact}, let X(M) be the set of

compact elements of 2M, and let a: PP->3C(Af) be the map y—*a(y).

Lemma 2.2. The map a: H-^X(M) is l.s.c.

Proof. Let VEM be open, and suppose that yoEH and a(ya)

C\V9*<p. Then there is an foEL such that s(f0)EV and /0*(y0)^0.

Let U= {yEH:f0*(y) 9*0}. Then U is a neighborhood y0 in H, and if

yE U, then <r(y)ns(fo) 9*0 by Lemma 2.1 (b), so <j(y)C\ V9*0. Hence
{yEH: o-(y)(~\ Vt*0 } is open in H, so a is l.s.c.

3. Proof of Theorem 1.2. First, apply [2, Theorem 1.1] to pick a
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l.s.c. map yp: X—>2K such that, for all xGX, we have ypix) E0ix) and

ypix) is compact.

Let B//)H//)M be as in §2, and apply Theorem 1.1 to pick a con-

tinuous g: X—>P such that g(x)GTb<Kx) ior all xGX. Then gix)EH

for all xGX.
Let a: H—»3C(M) be as in §2. Apply [3, Theorem 1.2] (that is, our

Theorem 1.2 with metrizable domain) to the set-valued function a,

which is l.s.c. by Lemma 2.2, to pick a continuous h: H—+E such

that hiy)EYEaiy) for all yEH.

Define/: X-^P by f = goh. If xGX, then gix)EYEypix), so aigix))

EtPix)E4>ix) by Lemma 2.1 (a), and hence

fix) = higix)) E TBaigix)) C rB0(x).

That completes the proof.
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