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1. Introduction. The following theorem was proved in [1, Footnote
7]. (A function ¢ from X to the collection 22 of nonempty closed subsets
of B is called lower semicontinuous (=1l.s.c.) if {xEX: @(x)M V#,@’}
is open in X whenever 17 is open in B, while I's4 denotes the closed
convex hull of 4 in B.)

TuEOREM 1.1 [1]. If X is paracompact, if B is a Banach space, and
if ¢: X—28 is Ls.c., then there is a continuous f: X—Y such that

f(x) ET s (x) for every xEX.

As was pointed out in [1, p. 364], Theorem 1.1 remains true if B
is any complete, metrizable locally convex space, but it is generally
false if B is not metrizable. We can, however, prove the following
generalization of Theorem 1.1.

THEOREM 1.2. Let X be paracompact, and M a metrizable subset of a
complete? locally convex space E. Let ¢: X—2M be l.s.c. and such that,
for some metric on M, every ¢(x) is complete. Then there exists a con-
tinuous f: X—E such that f(x) ETsp(x) for every xEX.

Theorem 1.2 was proved in [3] under the stronger assumption that
X is metrizable. While that was sufficient for the applications in [3],
and probably for most other applications, it did not generalize
Theorem 1.1, and was therefore never entirely satisfying. In this
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paper, some machinery is created in §2 which enables us to prove
Theorem 1.2 in full generality.

2. Two lemmas. Let M be a metric space with metric p, and L the
linear space of real-valued Lipschitz functions on X. As was shown
in [4], there is a Banach space B containing M isometrically, and a
linear map f—f* from L to the dual space of B, such that f*| M=f
for all fEL.

For each fEL, let s(f) = {xEM:f(x)#O}‘. For each y&EB, let

8(y) = {U C M: U open, f*(y) = 0 whenever f € L and s(f) C U},

and let o(y) = M —US(y). Clearly o(y) is closed.
The following lemmas are not the sharpest results possible, but
they suffice for our purposes.

LeEMMA 2.1. Suppose that K C M is compact, and that yET zK. Then
(a) o(y) CK.

(b) If fEL, and o(y)N\s(f) =, then f*(y) =0.

(c) o(y) = .

Proor. (a) Let U=M—K. Then f*(y) =0 whenever s(f) CU, so
U€ES(y) and hence o(y) CK.

(b) Since f=f*—f~, where f*=0 and f~=0 and both are in L, we
need only prove (b) for f=0.

Let A=s(f)NK. Then A is compact and disjoint from ¢ (y), so it
can be covered by open V;CX (=1, - - -, n) such that V,C U, for
some U;E8(y). Let gi(x) =p(x, X —V,) for all x& M. Then g;&L and
s(g) C Ui, s0 g*(y) =0. Let g= D ,g:. Then g*(y) =0. Now g(x) >0
when x & A4, so there is an >0 such that 0 =<f(x) Sag(x) for all xE4,
and therefore for all x €K since f(x) =0 if x©€K —A4. Hence 0 <f*(y)
Sag*(y) =0.

(c) Let h(x)=1 for all x&M. Then hEL and h*(y) =1, so o(y)
Ns(h) # J by (b). Hence a(y) # &, and that completes the proof.

Now let H=U{T3K: KCM, K compact}, let (M) be the set of
compact elements of 2%, and let 6: H—X (M) be the map y—a(y).

LEMMA 2.2. The map o: H>X(M) 1s L.s.c.

Proor. Let VCM be open, and suppose that yo&H and o(yo)
MV#¢. Then there is an fo&L such that s(fo) CV and fo*(y,) 0.
Let U= {yEH: fi*(y) #0}. Then U is a neighborhood y, in H, and if
y& U, then a(y)Ns(fo) =& by Lemma 2.1 (b), so e(y)N\ V= . Hence
{yEH:a(y)N Vs } is open in H, so ¢ is Ls.c.

3. Proof of Theorem 1.2. First, apply [2, Theorem 1.1] to pick a
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l.s.c. map ¥: X—2¥ such that, for all x&E X, we have ¢ (x) CF(x) and
Y(x) is compact.

Let BOHDM be as in §2, and apply Theorem 1.1 to pick a con-
tinuous g: X— B such that g(x) ETsf(x) for all xEX. Then g(x) EH
for all xEX.

Let o: H—>X(M) be as in §2. Apply [3, Theorem 1.2] (that is, our
Theorem 1.2 with metrizable domain) to the set-valued function o,
which is L.s.c. by Lemma 2.2, to pick a continuous k: H—E such
that i(y) ETl'go(y) for all yEH.

Define f: X »E by f=goh. If x& X, then g(x) ETg(x), so a(g(x))
Cy¥(x) Cp(x) by Lemma 2.1 (a), and hence

f(x) = h(g(x)) € Tro(g(x)) C Ted(x).
That completes the proof.
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