- 2. ——, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519.
- 3. V. L. Klee, Convex bodies and periodic homeomorphism in Hilbert spaces, Trans. Amer. Math. Soc. 74 (1953), 10-43.
- 4. ——, A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673-674.
- 5. Bor-Luh Lin, Two topological problems concerning infinite-dimensional normed linear spaces, Trans. Amer. Math. Soc. 114 (1965), 156-175.
- 6. J. R. Retherford and C. W. McArthur, Some remarks on bases in linear topological spaces, Math. Ann. 64 (1966), 38-41.

LOUISIANA STATE UNIVERSITY

A SELECTION THEOREM

E. MICHAEL1

1. Introduction. The following theorem was proved in [1, Footnote 7]. (A function ϕ from X to the collection 2^B of nonempty closed subsets of B is called *lower semicontinuous* (=l.s.c.) if $\{x \in X : \phi(x) \cap V \neq \emptyset\}$ is open in X whenever V is open in B, while $\Gamma_B A$ denotes the closed convex hull of A in B.)

THEOREM 1.1 [1]. If X is paracompact, if B is a Banach space, and if $\phi: X \to 2^B$ is l.s.c., then there is a continuous $f: X \to Y$ such that $f(x) \in \Gamma_B \phi(x)$ for every $x \in X$.

As was pointed out in [1, p. 364], Theorem 1.1 remains true if B is any complete, metrizable locally convex space, but it is generally false if B is not metrizable. We can, however, prove the following generalization of Theorem 1.1.

THEOREM 1.2. Let X be paracompact, and M a metrizable subset of a complete locally convex space E. Let $\phi: X \to 2^M$ be l.s.c. and such that, for some metric on M, every $\phi(x)$ is complete. Then there exists a continuous $f: X \to E$ such that $f(x) \in \Gamma_E \phi(x)$ for every $x \in X$.

Theorem 1.2 was proved in [3] under the stronger assumption that X is metrizable. While that was sufficient for the applications in [3], and probably for most other applications, it did not generalize Theorem 1.1, and was therefore never entirely satisfying. In this

Received by the editors May 23, 1966.

¹ Supported by NSF Grant 11-5020.

² It suffices if $\Gamma_{\mathbf{E}}K$ is compact for every compact $K \subset M$.

paper, some machinery is created in §2 which enables us to prove Theorem 1.2 in full generality.

2. **Two lemmas.** Let M be a metric space with metric ρ , and L the linear space of real-valued Lipschitz functions on X. As was shown in [4], there is a Banach space B containing M isometrically, and a linear map $f \rightarrow f^*$ from L to the dual space of B, such that $f^* \mid M = f$ for all $f \in L$.

For each $f \in L$, let $s(f) = \{x \in M : f(x) \neq 0\}^-$. For each $y \in B$, let $\$(y) = \{U \subset M : U \text{ open, } f^*(y) = 0 \text{ whenever } f \in L \text{ and } s(f) \subset U\}$, and let $\sigma(y) = M - \bigcup \(y) . Clearly $\sigma(y)$ is closed.

The following lemmas are not the sharpest results possible, but they suffice for our purposes.

LEMMA 2.1. Suppose that $K \subset M$ is compact, and that $y \in \Gamma_B K$. Then (a) $\sigma(y) \subset K$.

- (b) If $f \in L$, and $\sigma(y) \cap s(f) = \emptyset$, then $f^*(y) = 0$.
- (c) $\sigma(y) \neq \emptyset$.

PROOF. (a) Let U = M - K. Then $f^*(y) = 0$ whenever $s(f) \subset U$, so $U \subseteq S(y)$ and hence $\sigma(y) \subset K$.

(b) Since $f = f^+ - f^-$, where $f^+ \ge 0$ and $f^- \ge 0$ and both are in L, we need only prove (b) for $f \ge 0$.

Let $A = s(f) \cap K$. Then A is compact and disjoint from $\sigma(y)$, so it can be covered by open $V_i \subset X$ $(i = 1, \dots, n)$ such that $\overline{V}_i \subset U_i$ for some $U_i \in S(y)$. Let $g_i(x) = \rho(x, X - V_i)$ for all $x \in M$. Then $g_i \in L$ and $s(g_i) \subset U_i$, so $g_i^*(y) = 0$. Let $g = \sum_{i=1}^n g_i$. Then $g^*(y) = 0$. Now g(x) > 0 when $x \in A$, so there is an $\alpha > 0$ such that $0 \le f(x) \le \alpha g(x)$ for all $x \in A$, and therefore for all $x \in K$ since f(x) = 0 if $x \in K - A$. Hence $0 \le f^*(y) \le \alpha g^*(y) = 0$.

(c) Let h(x) = 1 for all $x \in M$. Then $h \in L$ and $h^*(y) = 1$, so $\sigma(y) \cap s(h) \neq \emptyset$ by (b). Hence $\sigma(y) \neq \emptyset$, and that completes the proof.

Now let $H = \bigcup \{ \Gamma_B K : K \subset M, K \text{ compact} \}$, let $\mathfrak{K}(M)$ be the set of compact elements of 2^M , and let $\sigma : H \to \mathfrak{K}(M)$ be the map $y \to \sigma(y)$.

LEMMA 2.2. The map $\sigma: H \rightarrow \mathfrak{K}(M)$ is l.s.c.

PROOF. Let $V \subset M$ be open, and suppose that $y_0 \in H$ and $\sigma(y_0) \cap V \neq \phi$. Then there is an $f_0 \in L$ such that $s(f_0) \subset V$ and $f_0 * (y_0) \neq 0$. Let $U = \{y \in H: f_0 * (y) \neq 0\}$. Then U is a neighborhood y_0 in H, and if $y \in U$, then $\sigma(y) \cap s(f_0) \neq \emptyset$ by Lemma 2.1 (b), so $\sigma(y) \cap V \neq \emptyset$. Hence $\{y \in H: \sigma(y) \cap V \neq \emptyset\}$ is open in H, so σ is l.s.c.

3. Proof of Theorem 1.2. First, apply [2, Theorem 1.1] to pick a

1406 E. MICHAEL

l.s.c. map $\psi: X \to 2^M$ such that, for all $x \in X$, we have $\psi(x) \subset \emptyset(x)$ and $\psi(x)$ is compact.

Let $B\supset H\supset M$ be as in §2, and apply Theorem 1.1 to pick a continuous $g\colon X\to B$ such that $g(x)\in \Gamma_B\psi(x)$ for all $x\in X$. Then $g(x)\in H$ for all $x\in X$.

Let $\sigma: H \to \mathfrak{K}(M)$ be as in §2. Apply [3, Theorem 1.2] (that is, our Theorem 1.2 with *metrizable* domain) to the set-valued function σ , which is l.s.c. by Lemma 2.2, to pick a continuous $h: H \to E$ such that $h(y) \in \Gamma_E \sigma(y)$ for all $y \in H$.

Define $f: X \to E$ by f = goh. If $x \in X$, then $g(x) \in \Gamma_E \psi(x)$, so $\sigma(g(x)) \subset \psi(x) \subset \phi(x)$ by Lemma 2.1 (a), and hence

$$f(x) = h(g(x)) \subset \Gamma_E \sigma(g(x)) \subset \Gamma_E \phi(x).$$

That completes the proof.

REFERENCES

- 1. E. Michael, Continuous selections. I, Ann. of Math. 63 (1956), 361-382.
- 2. —, A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959), 647-652.
 - 3. ——, Three mapping theorems, Proc. Amer. Math. Soc. 15 (1964), 410-415.
- 4. ——, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415-416.

University of Washington