ON A THEOREM OF KLEE

R. D. ANDERSON

In 1953 and 1956, Klee [3], [4] proved that for E any infinite-dimensional normed linear space and K any compact subset of E, $E \setminus K$ is homeomorphic to E. Klee’s argument used sequences of bounded convex sets. In [5], Lin has some extensions of Klee’s results using modifications of his methods. In this paper we give a short and elementary proof of a somewhat more general result\(^1\) using only simple set-theoretic properties.

A space S is said to be an α-space provided

1. S is an infinite-dimensional topological linear space, i.e., an infinite dimensional real vector space with a Hausdorff topology in which vector addition and scalar multiplication are jointly continuous,

2. S has a Schauder basis, i.e., a sequence $\{x_i\}_{i>0}$ of elements of S such that for each $s \in S$ there is a unique sequence of scalars $\{a_i\}$ with $s = \sum_{i=1}^{\infty} a_i x_i$ (convergence being in the topology of S) such that the function f_i defined by $f_i(s) = a_i$ is continuous for each i, and

3. there is a neighborhood U of the origin such that the elements $\{x_i\}$ of the Schauder basis above are not in U.

Henceforth, all spaces under discussion are to be α-spaces.

For each i, let M_i denote the product of i copies of the reals with usual distance function d_i referring to distance between points, between a point and a set or between two sets. Let f_i be as defined in condition (2) of the definition of an α-space and let g_j be the map of S onto M_j defined by $g_j(s) = (f_1(s), f_2(s), \cdots, f_i(s))$. Since, by hypothesis, f_i is continuous (for each i), then so is g_j for each j.

A set $K \subseteq S$ is said to be projectible provided

1. K is closed,

2. for any $p \notin S \setminus K$, there is a j such that $g_j(p)$ is not an element of the closure of $g_j(K)$, and

3. there exist infinitely many i such that $f_i(K)$ is bounded above or below.

The proof of the following lemma is trivial and is therefore omitted.

\(^1\) I am indebted to V. L. Klee and to J. R. Retherford for helpful suggestions leading to the present form of the main theorem (which was originally conceived as a theorem about l_p spaces).

Presented to the Society, November 21, 1964; received by the editors March 20, 1965.
Lemma. Let S be an α-space, $s \in S$, K be a projectible subset of S, and let $g_i(s)$ be a point of M_i not in the closure of $g_i(K)$. Then, for each $j > i$, $d_j(g_i(s), g_i(K)) \geq d_i(g_i(s), g_i(K)) > 0$.

Theorem. Let S be an α-space and K be a projectible subset of S. Then $S \setminus K$ is homeomorphic to S.

Proof. Without loss of generality, we may let $\{n_i\}_{i>0}$ be a sequence of integers such that, for each $i > 0$, $n_i > i$ and $f_{n_i}(K)$ is bounded below by ε_{n_i}. For each $i > 0$, let U_i be the $(1/2^i)$-neighborhood of $g_i(K)$ in M_i.

For each $i \geq 1$, let h_i be the homeomorphism of S onto itself such that (1) for each $q \in S$ and each $m \neq n_i$, $f_m(h_i(q)) = f_m(q)$ and (2) for each $q \in S$, $f_{n_i}(h_i(q)) = f_{n_i}(q) + 2r_{q,i}(\varepsilon_{n_i} + i)$ where

$$r_{q,i} = \min \left[\frac{d_i(g_i(q), M_i \setminus U_i)}{d_i(g_i(K), M_i \setminus U_i)}, 1 \right].$$

Let h be defined as follows:

for $j \in \{n_i\}$, $f_j(h(s)) = f_j(s)$

for any $i > 0$, $f_{n_i}(h(s)) = f_{n_i}(h_i(s))$.

Then h is a homeomorphism of $S \setminus K$ onto S as desired and as we shall verify.

Consider $q \in S \setminus K$. By condition 2 of projectibility and the Lemma, there is a neighborhood V of q such that $g_i(V) \subset M_i \setminus U_i$ for all but finitely many i's. Thus, for all but finitely many i's, h_i is the identity on V. Hence $h(q)$ is an element of S and h is continuous at q.

Let π_i be a homeomorphism defined coordinatewise as follows:

for $j \leq i$, $f_{n_j}(\pi_i(x)) = f_{n_j}(h_j(x))$

for $k \in \{n_j\}_{j=1}^i$, $f_k(\pi_i(x)) = f_k(x)$.

We note that for $j > 0$, h_j is the identity except on $g_j^{-1}(U_j)$. Also $g_j^{-1}(U_j) \supset g_j^{-1}(U_{j+1})$. Thus $(\pi_{j+1} \pi_j^{-1})$ is the identity except on $\pi_j(g_j^{-1}(U_{j+1}))$ since π_{j+1} acts in the same way as π_j except on $\pi_j(g_j^{-1}(U_{j+1}))$.

Clearly by considering successive coordinates, h may be regarded as $-(\pi_{j+1} \pi_j^{-1})-(\pi_2 \pi_1^{-1})(\pi_1)\pi_1$ and for each i, π_i is the product of the first i indicated factors from the right. Now we think of the effects of these factors starting from the right. Let iU denote the set of products of the scalar i and the elements of the set U of condition (3) of the α-space definition.
First π_1 moves $g_2^{-1}(U_2)$ outside of $1U$ in the n_1 direction. Thus $(\pi_2\pi_1^{-1})$ is the identity on $1U$. But $(\pi_2\pi_1^{-1})$ moves $\pi_1(g_2^{-1}(U_3))$ outside of $2U$ in the n_2 direction. Thus $(\pi_3\pi_2^{-1})$ is the identity on $2U$. Inductively, $(\pi_i\pi_{i-1}^{-1})$ is the identity on iU. But since, for each i and each $j>0$, $(\pi_{i+j}\pi_{i+j-1}^{-1})$ is the identity on iU, then on iU, h^{-1} may be considered to be defined as

$$[(\pi_{i+1}\pi_{i}^{-1})(\cdots(\pi_2\pi_1^{-1})\pi_1)]^{-1}.$$

Hence since $S=\bigcup_{i>0} iU$, h^{-1} is defined and continuous on S and h is a homeomorphism of $S\setminus K$ onto S.

It is clear that any Banach space with a basis is an α-space (for, without loss of generality, we may assume that the basis elements all have norm 1). Thus for each $p\geq 1$, l_p is an α-space. It is not hard to see that all l_p spaces for $0<p<1$ are also α-spaces. In [6], it is shown that various topological linear spaces including some nonmetrizable ones satisfy conditions guaranteeing that they are α-spaces. On the other hand, the countable infinite product s of lines as a topological linear space is not an α-space (the set U does not exist). The argument of this paper does not work for this type of space. However, in [1] the author shows by a different argument that any countable union of compact sets or even sets comparable to projectible sets may be deleted from s without changing its topological character. Since l_2 is homeomorphic to s, [2], l_2 also can lose an arbitrary countable union of compact sets without changing its topological character. Indeed, Klee's argument [3] can be easily modified to show that for K any countable set of points, $l_2\setminus K$ is homeomorphic to l_2.

For any α-space S, any compact set K is projectible since, if, for each $i>0$, $g_i(q)$ is an element of the closure of $g_i(K)$, then as K is compact, q is a limit point of K. Clearly there are many projectible sets which are not compact. In all Banach spaces with bases, all weakly (sequentially) compact sets are projectible.

Corollary. If S is an α-space and K is a compact subset of S, then $S\setminus K$ is homeomorphic to S.

Corollary. If S is a Banach space with a basis and K is a weakly compact subset of S, then S/K is homeomorphic to S.

References

A SELECTION THEOREM

E. MICHAEL

1. Introduction. The following theorem was proved in [1, Footnote 7]. (A function φ from X to the collection 2^B of nonempty closed subsets of B is called lower semicontinuous (=l.s.c.) if \{x \in X: φ(x) \cap V \neq \emptyset\} is open in X whenever V is open in B, while Γ_B A denotes the closed convex hull of A in B.)

Theorem 1.1 [1]. If X is paracompact, if B is a Banach space, and if φ: X → 2^B is l.s.c., then there is a continuous f: X → Y such that f(x) ∈ Γ_B φ(x) for every x ∈ X.

As was pointed out in [1, p. 364], Theorem 1.1 remains true if B is any complete, metrizable locally convex space, but it is generally false if B is not metrizable. We can, however, prove the following generalization of Theorem 1.1.

Theorem 1.2. Let X be paracompact, and M a metrizable subset of a complete locally convex space E. Let φ: X → 2^M be l.s.c. and such that, for some metric on M, every φ(x) is complete. Then there exists a continuous f: X → E such that f(x) ∈ Γ_E φ(x) for every x ∈ X.

Theorem 1.2 was proved in [3] under the stronger assumption that X is metrizable. While that was sufficient for the applications in [3], and probably for most other applications, it did not generalize Theorem 1.1, and was therefore never entirely satisfying. In this case, it suffices if Γ_E K is compact for every compact K ⊆ M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use