SOLVABLE GROUPS ADMITTING A FIXED-POINT-FREE AUTOMORPHISM OF PRIME POWER ORDER

FLETCHER GROSS

1. **Introduction.** The purpose of the paper is to prove the following:

THEOREM 1. Suppose G is a finite group which admits an automorphism σ of order p^n , where p is an odd prime, such that σ fixes only the identity element of G.

- (a) If G is solvable, then $h(G) \leq n$.
- (b) If G is π -solvable, then $l_{\pi}(G) \leq [(n+1)/2]$. Furthermore, both these inequalities are best-possible.

Here h(G), the Fitting height (also called the nilpotent length) of G, is as defined in [7]. $l_{\tau}(G)$, the π -length of G, is defined in an obvious analogy to the definition of p-length in [2].

Higman [3] proved Theorem 1 in the case n=1 (subsequently, without making any assumptions on the solvability of G, Thompson [6] obtained the same result). Hoffman [4] and Shult [5] proved Theorem 1 provided that either p is not a Fermat prime or a Sylow 2-group of G is abelian.

For p=2, Gorenstein and Herstein [1] obtained Theorem 1 if $n \le 2$, and Hoffman and Shult both obtained Theorem 1 provided that a Sylow q-group of G is abelian for all Mersenne primes q which divide the order of G. Shult, who considers a more general situation of which Theorem 1 is a special case, recently extended his results to include all primes, but his bound on h(G) is not best-possible in the special case of Theorem 1. It also should be noted that Thompson [7] obtained a bound for h(G) under a much more general hypothesis than that considered in the other papers mentioned.

Theorem 1 is a consequence of

THEOREM 2. Let G be a finite group admitting a fixed-point-free automorphism σ of order p^n , p an odd prime, and let H be a normal Hall subgroup of G such that H contains its centralizer in G. Then the automorphism of G/H induced by $\sigma^{p^{n-1}}$ is the identity automorphism.

Here again, the papers of Hoffman and Shult imply Theorem 2 if either p is not a Fermat prime or a Sylow 2-group of G is abelian. Thus what is new about the present paper is that no condition is imposed upon the Sylow 2-groups of G if p is a Fermat prime.

The restriction to odd primes is essential since Theorem 2 is false for p=2, n>2. To see this let $q=2^m-1$ be some Mersenne prime and let M be the nonabelian group of exponent q and order q^3 . M admits a fixed-point-free automorphism σ of order 2^{m+1} . Let K be the semi-direct product of M and the group generated by σ^2 , and choose F to be any finite field such that (1) the characteristic of F is not 2 or q, and (2) F is a splitting field for K. There is a faithful irreducible representation ρ of K over F such that $\rho(\sigma^2)$ has no nonzero fixed vectors. Now for $x \in M$, define $\rho^*(x)$ by $\rho^*(x) = \rho(x) \oplus \rho(x^{\sigma})$. Then choose $\rho^*(\sigma)$ to be

$$\begin{pmatrix} 0 & \rho(\sigma^2) \\ I & 0 \end{pmatrix}$$
.

 $\rho^*(\sigma)$ is of order 2^{m+1} and $\rho^*(\sigma)^{-1}\rho^*(x)\rho^*(\sigma) = \rho^*(x^{\sigma})$. Thus ρ^* is a faithful representation of the semidirect product of M and $\langle \sigma \rangle$, the group generated by σ . If H is the space on which $\rho^*(M\langle \sigma \rangle)$ operates, then $\rho^*(\sigma)$ induces a fixed-point-free automorphism of the semi-direct product HM. This automorphism is of order 2^{m+1} on both HM and HM/H.

- 2. **Proofs**. First we need some elementary number theoretic results which we state without proof.
- (2.1) LEMMA. Let $p = 2^s + 1$ be an odd Fermat prime. Then p^k divides $(2^n 1)$ if and only if $2s p^{k-1}$ divides n.
- (2.2) LEMMA. Suppose $p = 2^{a} + 1$ is an odd Fermat prime and $p^{a} = 2^{b} + 1$ for some positive integers a, b. Then a = 1, b = s unless p = 3, in which case a = 2, b = 3 is also possible.

We now proceed to prove Theorem 2 by induction on the order of G. H is a characteristic subgroup of G so H certainly admits σ . By induction, if G_1 is a proper subgroup of G such that G_1 admits σ and $G_1 \ge H$, then $\sigma^{p^{n-1}}$ must be the identity on G_1/H . According to [2, Theorem C], this implies that

- (1) G/H is a q-group for some prime q.
- (2) Either $\phi(G/H) = 1$ or $(G/H)' = \phi(G/H) = Z(G/H)$.
- (3) $\langle \sigma \rangle$ is faithfully and irreducibly represented by the automorphisms induced on $(G/H)/\phi(G/H)$.

(Here $\phi(G)$ and Z(G) denote the Frattini subgroup and center, respectively, of G.) Now there must be a Sylow q-group M of G such that M admits σ . Clearly G = HM and $M \cong G/H$. Thus we must show that $\sigma^{p^{n-1}}$ fixes M elementwise. For convenience we set $\sigma^{p^{n-1}} = \sigma'$.

Now suppose x is an element of M not fixed by σ' . Let $y = (x, \sigma')$

 $=x^{-1}x^{\sigma'}\neq 1$. Now since H contains its centralizer in G, it follows that there is a Sylow r-group K of H such that M normalizes K, K admits σ , and $(y, K) \neq 1$. Now let N be the centralizer of K in M, and consider the group KM/N. This group satisfies the hypothesis of Theorem 2, and so, if $H\neq K$, we must have σ' is the identity on M/N. But N is a proper subgroup of M (since $y\in N$) so that σ' must fix N elementwise. Since p cannot divide the order of M, this would imply that σ' is the identity on M.

Thus we assume that H is an r-group for some prime r. Now $G/\phi(H)$ satisfies the hypothesis of the theorem, so by induction we may assume that $\phi(H)=1$. From now on we consider H as a vector space over a field F of characteristic r and we consider $M\langle\sigma\rangle$, the semidirect product of M and $\langle\sigma\rangle$, as a linear group operating on H. Since σ is fixed-point-free on G, σ , as a linear transformation, cannot have 1 as an eigenvalue. Now extending the field F does not change the structure of $\langle\sigma\rangle M$ nor the eigenvalues of σ . Accordingly we consider $\langle\sigma\rangle M$ as a linear group over a field F of characteristic r, and we assume that F is a splitting field for $\langle\sigma\rangle M$.

Now let V be an irreducible $F-\langle \sigma \rangle M$ submodule such that $(M, \sigma^{p^{n-1}})$ is not the identity on V. Next decompose V into the sum $V=V_1\oplus V_2\oplus \cdots$ of minimal characteristic F-M submodules V_i . Since V is irreducible, σ must permute the V_i transitively. Let $\tau=\sigma^{p^m}$ be the first power of σ which fixes all the V_i , and number the V_i so that $V_i\sigma=V_{i+1\pmod{p^m}}$. Next let N be the restriction of M to V, K_i the kernel of the representation of N afforded by the module V_i , and $Q_i=N/K_i$. Since $Z(Q_i)$ is represented by a scalar matrix on V_i , τ must fix $Z(Q_i)$ elementwise. Now m=0 would imply that $\tau=\sigma$, $V=V_1$, and $K_1=1$. Since σ must induce a fixed-point-free automorphism of Z(N), this implies that m>0.

Now the argument in [5, pp. 704–708] shows that 1 must be an eigenvalue of σ unless $p^{n-m} = q^d + 1$, Q_i is of order q^{2d+1} , and Q_i is an extra-special q-group. We now proceed to finish the proof of Theorem 2 by showing that under the conditions just stated, σ cannot be fixed-point-free on N'.

First $p^{n-m} = q^d + 1$ implies that q = 2 (since p is odd) and p is a Fermat prime $= 2^s + 1$. Thus either d = s, n - m = 1 or, if p = 3, we could have d = 3, n - m = 2. In any event d is the smallest positive integer such that $(2^{2d} - 1)$ is divisible by p^{n-m} . Now $\sigma^{p^{n-1}}$ is not the identity on any V_i since $(M, \sigma^{p^{n-1}})$ is not the identity on V. For the same reason N/N' is a faithful $GF(q) - \langle \sigma \rangle$ module and Q_i/Q_i' is a faithful $GF(q) - \langle \sigma \rangle$ module. But since $M/\phi(M)$ is an irreducible module for $\langle \sigma \rangle$ and since Q_i/Q_i' is of order 2^{2d} , it follows that N/N'

and Q_i/Q_i' are irreducible modules for $\langle \sigma \rangle$ and $\langle \tau \rangle$, respectively. From (2.1) it follows that the smallest integer k such that p^n divides (2^k-1) is $k=2sp^{n-1}=2dp^m$. Thus N/N' is of order 2^{2dp^m} . Now $Q_i=N/K_i$ and so Q_i/Q_i' is operator isomorphic as a $\langle \tau \rangle$ -module to $N/(K_iN')$.

(2.3) LEMMA. (1) For all i, k such that $1 \le i \le p^m$, $1 \le k \le p^m$,

$$\left(\bigcap_{j=i}^{i+k-1} K_j N'\right) / N'$$

is of order $2^{2d(p^m-k)}$.

(2) For all i, k such that $1 \le i \le p^m$, $1 \le k < p^m$,

$$\left(\bigcap_{j=i}^{i+k-1} K_j N'\right) (K_{i+k} N') = N.$$

PROOF. Throughout, the indices j on the subgroups K_j are to be taken modulo p^m . Now if k=1, then

$$\left| K_{i}N'/N' \right| = \left| N/N' \right| / \left| N/K_{i}N' \right| = 2^{2d(p^{m}-1)}.$$

Now assume the first assertion of the lemma is true for a given $k < p^m$. Now

$$\left(\bigcap_{j=i}^{i+k-1} K_j N'\right) K_{i+k} N' / K_{i+k} N'$$

is a $\langle \tau \rangle$ -submodule of $N/K_{i+k}N'$. Since $N/K_{i+k}N'$ is an irreducible $\langle \tau \rangle$ -module, we conclude that either the second part of the lemma holds or

$$\bigcap_{j=i}^{i+k-1} K_j N' \leq K_{i+k} N'.$$

In the latter case we certainly have

$$\bigcap_{j=i}^{i+k-1} K_j N' \leq \bigcap_{j=i+1}^{i+k} K_j N' = \left(\bigcap_{j=i}^{i+k-1} K_j N'\right)^{\sigma}.$$

Since

$$N > \left(\bigcap_{i=1}^{i+k-1} K_i N'\right) > N'$$

from (1), this implies that

$$\left(\bigcap_{j=i}^{i+k-1} K_j N'\right) / N'$$

is a nontrivial proper $\langle \sigma \rangle$ -submodule of the irreducible $\langle \sigma \rangle$ -module N/N'. This contradiction establishes the second part of the lemma for the given value of k.

But then

$$N/K_{i+k}N' \cong \left(\bigcap_{i=i}^{i+k-1} K_{i}N'\right) / \left(\bigcap_{i=i}^{i+k} K_{i}N'\right).$$

But since

$$\left| \left(\bigcap_{j=i}^{i+k-1} K_j N' \right) \middle/ N' \right| = 2^{2d(p^m-k)} \quad \text{and} \quad \left| N/K_{i+k} N' \right| = 2^{2d},$$

this implies that

$$\left| \left(\bigcap_{\substack{i=i \\ j=i}}^{i+k} K_j N' \right) \middle/ N' \right| = 2^{2d(p^m-k-1)}.$$

Thus part (1) of the lemma is proved for k+1. Then, by induction, the lemma is proved.

Now let $L_i = \bigcap_{j \neq i} K_j N'$ for all i, $1 \leq i \leq p^m$. From the lemma, $L_i K_i = L_i K_i N' = N$ for all i. Also since $L_i^{\sigma} = L_{i+1 \pmod{p^m}}$, $L_1 L_2 \cdots L_{p^m} / N'$ is a nontrivial $\langle \sigma \rangle$ -module. Thus $L_1 L_2 \cdots L_{p^m} = N$. Our goal now is to show that N' is the direct product

$$L_1' \times L_2' \times \cdots \times L_{p^m}'$$

To do this, we first need

(2.4) LEMMA.
$$(L_i, L_k) = 1$$
 if $i \neq k$.

PROOF. Suppose $(x, y) \neq 1$ for $x \in L_i$, $y \in L_k$. Choose t such that (x, y) is not the identity on V_t . Now at least one of L_i and L_k is contained in K_tN' . Without loss of generality assume that $L_i \leq K_tN'$. Therefore x = gh where $g \in K_t$, $h \in N'$. Now $N' \leq Z(N)$. Therefore (gh, y) = (g, y). But g is the identity on V_t which implies that (g, y) is also the identity on V_t . This proves the lemma.

As an immediate consequence of the lemma we have $N' = L_1' L_2' \cdots L_{p^m}'$. Now as in the proof just given, $L_i \leq K_t N'$ implies that (L_i, N) is the identity on V_t . Since N is faithfully represented on V_i , this implies that L_i' is faithfully represented on V_i . Thus

$$|L_i'| = |Q_i'| = 2$$
 for all i .

Now suppose $L'_i \cap \Pi_{j\neq i}$ $L'_j \neq 1$. Then we would have $\Pi_{j\neq i}$ L'_j not the identity on V_i . But $j\neq i$ implies that $L'_j \leq (L_i, N)$ is the identity on V_i . Thus $L'_i \cap \Pi_{j\neq i}$ $L'_j = 1$ for all i. This implies that

$$N' = L_1' \times L_2' \times \cdots \times L_{n^m}'$$

and thus $|N'| = 2^{p^m}$. Since $|N'| \not\equiv 1 \pmod{p}$, N' cannot have a fixed-point-free automorphism whose order is a power of p. This concludes the proof of Theorem 2.

The proof of Theorem 1 now follows by induction on the order of G. First suppose G has two distinct minimal σ -admissible normal subgroups H_1 , H_2 . Then G is isomorphic to a subgroup of the direct product of G/H_1 and G/H_2 and both G/H_1 and G/H_2 satisfy the theorem. It then follows that G would satisfy the theorem.

Thus, for part (a) of the theorem, we may assume that the Fitting group $F_1(G)$ is a q-group for some prime q. Then $O_{qq'}(G)$ satisfies the conditions of Theorem 2. Therefore $\sigma^{p^{n-1}}$ is the identity on $O_{qq'}(G)/F_1(G)$. By [4, Lemma 4], this implies that $\sigma^{p^{n-1}}$ is the identity on $G/F_1(G)$. Then, by induction, we have

$$h(G) = 1 + h(G/F_1(G)) \le 1 + (n-1) = n.$$

For part (b) of Theorem 1, we may assume that $O_{\tau'}(G) = 1$. Then by one application of Theorem 2, $\sigma^{p^{n-1}}$ is the identity on $O_{\pi\pi'}(G)/O_{\tau}(G)$, and by a second application, $\sigma^{p^{n-2}}$ is the identity on $O_{\pi\pi'\pi}(G)/O_{\pi\pi'\pi}(G)$. Thus, again using [4, Lemma 4], $\sigma^{p^{n-2}}$ is the identity on $G/O_{\pi\pi'\pi}(G)$. Induction now implies that

$$l_{\pi}(G) = 1 + l_{\pi}(G/O_{\pi\pi'}(G)) \le 1 + [(n-1)/2] = [(n+1)/2].$$

All that remains now is to show that the inequalities in Theorem 1 are best-possible. For part (a), this follows from examples constructed by Shult [5, Theorem 5]. For part (b), however, Shult's construction has to be modified somewhat. Working by induction, Shult assumes that G_k is a solvable group of Fitting height k which admits a fixed-point-free automorphism of order p^k . Then if q_k is any prime such that $q_k \equiv 1 \pmod{p}$ and q_k does not divide the order of G, Shult proceeds to construct a new group G_{k+1} such that $F_1(G_{k+1})$ is a q-group, $G_{k+1}/F_1(G_{k+1})$ is isomorphic to G_k , $h(G_{k+1}) = k+1$, and G_{k+1} admits a fixed-point-free automorphism of order p^{k+1} . A close look at Shult's procedure reveals that it is only necessary that q_k does not divide the order of $F_1(G)$. Thus if q, r are distinct primes such that $q \equiv r \equiv 1 \pmod{p}$, Shult's procedure can be used to construct groups G_k with the following properties.

- (1) G_k is a q, r-group.
- (2) $F_1(G_k)$ is either a q- or an r-group.
- (3) G_k admits a fixed-point-free automorphism of order p^k .
- $(4) \quad h(G_k) = k.$

It now follows that $l_q(G_k)$ and/or $l_r(G_k)$ is equal to [(k+1)/2]. Thus the inequality in part (b) is best-possible.

REFERENCES

- 1. D. Gorenstein and I. Herstein, Finite groups admitting a fixed-point-free automorphism of order 4, Amer. J. Math. 83 (1961), 71-78.
- 2. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42.
- 3. G. Higman, Groups and rings having automorphisms without non-trivial fixed elements, J. London Math. Soc. 32 (1958), 321-334.
- 4. F. Hoffman, Nilpotent height of finite groups admitting fixed-point-free automorphisms, Math. Z. 85 (1964), 260-267.
- 5. E. Shult, On groups admitting fixed point free abelian groups, Illinois J. Math. 9 (1965), 701-720.
- 6. J. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad Sci. U.S.A. 45 (1959), 578-581.
 - 7. ——, Automorphisms of solvable groups, J. Algebra 1 (1964), 259-267.

University of Alberta, Edmonton