
SOLVABLE GROUPS ADMITTING A FIXED-POINT-FREE
AUTOMORPHISM OF PRIME POWER ORDER

FLETCHER GROSS

1. Introduction. The purpose of the paper is to prove the following:

Theorem 1. Suppose G is a finite group which admits an automor-

phism a of order pn, where p is an odd prime, such that a fixes only the

identity element of G.

(a) If G is solvable, then h(G) ^n.

(b) If G is Tr-solvable, then lx(G) g [(n + l)/2].

Furthermore, both these inequalities are best-possible.

Here h(G), the Fitting height (also called the nilpotent length) of

G, is as defined in [7]. P(G), the 7t-length of G, is defined in an obvious

analogy to the definition of ^-length in [2].

Higman [3] proved Theorem 1 in the case w = l (subsequently,

without making any assumptions on the solvability of G, Thompson

[6] obtained the same result). Hoffman [4] and Shult [5] proved

Theorem 1 provided that either p is not a Fermat prime or a Sylow

2-group of G is abelian.

For p = 2, Gorenstein and Herstein [l] obtained Theorem 1 if

»S2, and Hoffman and Shult both obtained Theorem 1 provided

that a Sylow g-group of G is abelian for all Mersenne primes q which

divide the order of G. Shult, who considers a more general situation

of which Theorem 1 is a special case, recently extended his results to

include all primes, but his bound on h(G) is not best-possible in

the special case of Theorem 1. It also should be noted that Thompson

[7] obtained a bound for h(G) under a much more general hypothesis

than that considered in the other papers mentioned.

Theorem 1 is a consequence of

Theorem 2. Let G be a finite group admitting a fixed-point-free

automorphism a of order pn, p an odd prime, and let H be a normal Hall

subgroup of G such that H contains its centralizer in G. Then the auto-

morphism of G/H induced by <rp"~ is the identity automorphism.

Here again, the papers of Hoffman and Shult imply Theorem 2 if

either p is not a Fermat prime or a Sylow 2-group of G is abelian.

Thus what is new about the present paper is that no condition is im-

posed upon the Sylow 2-groups of G if p is a Fermat prime.
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The restriction to odd primes is essential since Theorem 2 is false

for p = 2, ra>2. To see this let q = 2m— 1 be some Mersenne prime and

let M be the nonabelian group of exponent q and order q3. M admits

a fixed-point-free automorphism a of order 2m+1. Let K be the semi-

direct product of M and the group generated by a2, and choose F to

be any finite field such that (1) the characteristic of P is not 2 or q,

and (2) F is a splitting field for K. There is a faithful irreducible

representation p of K over F such that pia2) has no nonzero fixed

vectors. Now for xEM, define p*(x) by p*(x) = p(x) ©p(x"). Then

choose p*(<r) to be

p*(<r) is of order 2m+l and p*(cr)-1p*(x)p*(o-) =p*(x'T). Thus p* is a

faithful representation of the semidirect product of M and (a), the

group generated by a. If P is the space on which p*iM{a)) operates,

then p*(<r) induces a fixed-point-free automorphism of the semi-

direct product HM. This automorphism is of order 2m+1 on both HM

and HM/H.

2. Proofs. First we need some elementary number theoretic re-

sults which we state without proof.

(2.1) Lemma. Let p = 2' +1 be an odd Fermat prime. Then pk divides

(2" — 1) if and only if 2s pk~l divides ra.

(2.2) Lemma. Suppose p = 2' + l is an odd Fermat prime and p'

= 2*+l for some positive integers a, b. Then a = l, b = s unless p = 3,

in which case a = 2, 6 = 3 is also possible.

We now proceed to prove Theorem 2 by induction on the order of

G. H is a characteristic subgroup of G so H certainly admits a. By

induction, if Gi is a proper subgroup of G such that Gi admits a and

Gi^H, then apn~ must be the identity on Gi/H. According to [2,

Theorem C], this implies that

(1) G/H is a g-group for some prime q.

(2) Either <piG/H) = 1 or (G/P)' =<biG/H) =ZiG/H).
(3) (<r) is faithfully and irreducibly represented by the automor-

phisms induced on iG/H)/<j>iG/H).

(Here <piG) and Z(G) denote the Frattini subgroup and center, re-

spectively, of G.) Now there must be a Sylow g-group M of G such

that M admits a. Clearly G = HM and M^G/H. Thus we must show

that <7J,"_ fixes M elementwise. For convenience we set o-p"~ =c'.

Now suppose x is an element of M not fixed by <r'. Let y = (x, a')
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= x~1x"'9*l. Now since H contains its centralizer in G, it follows that

there is a Sylow r-group K of H such that Af normalizes K, K admits

a, and (y, K)9*l. Now let N be the centralizer of K in Af, and con-

sider the group KM/N. This group satisfies the hypothesis of Theo-

rem 2, and so, if Ht*K, we must have tr' is the identity on M/N. But

A is a proper subgroup of Af (since yGA) so that a' must fix N

elementwise. Since p cannot divide the order of Af, this would imply

that a' is the identity on Af.

Thus we assume that H is an r-group for some prime r. Now

G/<p(H) satisfies the hypothesis of the theorem, so by induction we

may assume that <p(H) =1. From now on we consider H as a vector

space over a field F of characteristic r and we consider Af (<r), the

semidirect product of Af and (a), as a linear group operating on H.

Since a is fixed-point-free on G, a, as a linear transformation, cannot

have 1 as an eigenvalue. Now extending the field F does not change

the structure of (o-)Af nor the eigenvalues of a. Accordingly we con-

sider (o)M as a linear group over a field F of characteristic r, and we

assume that F is a splitting field for (<r)M.

Now let V be an irreducible F—(o)M submodule such that

(Af, ap"~ ) is not the identity on V. Next decompose V into the sum

]/= Vi@V2@ ■ ■ • of minimal characteristic F—M submodules F,-.

Since V is irreducible, a must permute the Vi transitively. Let

r = ap" be the first power of a which fixes all the F,-, and number the

Vi so that ViO= Vi+i (modj>»>)- Next let N be the restriction of Af to

V, Ki the kernel of the representation of N afforded by the module

Vi, and Qi = N/Ki. Since Z(Qi) is represented by a scalar matrix on

Vi, t must fix Z(Qi) elementwise. Now m = 0 would imply that r = o,

V= Vi, and Pi = l. Since a must induce a fixed-point-free automor-

phism of Z(N), this implies that m>0.

Now the argument in [5, pp. 704-708] shows that 1 must be an

eigenvalue of a unless pn~m = qd+l, Qi is of order q2i+l, and Qi is an

extra-special g-group. We now proceed to finish the proof of Theorem

2 by showing that under the conditions just stated, a cannot be fixed-

point-free on N'.
First pn~m = qdArl implies that g = 2 (since p is odd) and p is a

Fermat prime = 2" + L Thus either d = s, n—m = l or, if p = 3, we

could have d = 3, n — m = 2. In any event d is the smallest positive

integer such that (2M—1) is divisible by pn~m. Now opn~l is not the

identity on any F,- since (Af, op"~ ) is not the identity on V. For the

same reason N/N' is a faithful GF(q) — (a) module and Qi/Q' is a

faithful GF(q) — (r) module. But since M/<p(M) is an irreducible

module for (a) and since Qi/Qi is of order 22d, it follows that N/N'



i966] SOLVABLE GROUPS ADMITTING AN AUTOMORPHISM 1443

and Qi/Qi are irreducible modules for (<r) and (t), respectively. From

(2.1) it follows that the smallest integer k such that pn divides (24— 1)

is k = 2sp"-1 = 2dpm. Thus N/N' is of order 22d»n. Now Q( = N/Ki and

so Qi/Q! is operator isomorphic as a (r)-module to N/iKiN').

(2.3) Lemma. (1) For all i, k such that l^i^pm, l^k^pm,

(«'+*—1 \        ,

fj    KjN'J/N'

is of order 22d^m~k\

(2)  For all i, k such that l^i^pm, l^k<pm,

(i+k-l \

0    KSN' \ iKi+kN') = N.

Proof. Throughout, the indices j on the subgroups K,- are to be

taken modulo pm. Now if k = l, then

| KiN'/N' | =  | N/N' | / | N/KiN' \ = 22d<-»m-1\

Now assume the first assertion of the lemma is true for a given

k<pm. Now

(i+k-l \

D   KjN'J Ki+kN'/Ki+kN'

is a (r)-submodule of N/Ki+kN'. Since N/Ki+kN' is an irreducible

(r)-module, we conclude that either the second part of the lemma

holds or

t+it-i

0   KjN' ^ Ki+kN'.
y-i

In the latter case we certainly have

i+k-l i+k / i+k-l \ r

n k,n' ^ n k,n' = (  n k.n') -
j-i i-i+1 \    i-i /

Since

(i+k-l \

D   K,N'j > N'

from (1), this implies that

(   0   KiN'/N'



1444 FLETCHER GROSS [December

is a nontrivial proper (o-)-submoduIe of the irreducible (o-)-module

N/N'. This contradiction establishes the second part of the lemma for

the given value of k.

But then

/ i+k-l \        I   /  i+k \

N/Ki+kN'«f  n K'N') / \ n wy

But since

I / i+k-i \     ,      I

f    0   PyA7') /A7'   = 22<J(""'-«    and     \ N/Ki+kN'\ = 22d,
\    j=i / '

this implies that

1/   i+k v. , I

f   fj  KiN'J / N'   = 2M<""-*-1>.

Thus part (1) of the lemma is proved for £ + 1. Then, by induction,

the lemma is proved.

Now let Li = C\i*iKjN' for all i, 1 ̂ ig,pm. From the lemma, PiP,-

= LiKiN' = N for all i. Also since P" = P,+i (m0d P°>), P1P2 • • • Lp™/N'

is a nontrivial (<r)-module. Thus L1P2 • • • LP*> = N. Our goal now is

to show that N' is the direct product

Li X L2 X ■ ■ ■ X Lpm.

To do this, we first need

(2.4) Lemma. (P,-, P*) = l if i^k.

Proof. Suppose (x, y)^l ior xELit yELk. Choose t such that

(x, y) is not the identity on Vt. Now at least one of Li and Lk is con-

tained in KtN'. Without loss of generality assume that Li^KtN'.

Therefore x = gh where gEKt, hEN'. Now N'^ZiN). Therefore

igh, y) = ig, y). But g is the identity on F( which implies that (g, y)

is also the identity on Vt. This proves the lemma.

As an immediate consequence of the lemma we have N'=L{L2

■ • • P^m. Now as in the proof just given, Li^KtN' implies that (Zi,

N) is the identity on Vt. Since N is faithfully represented on F, this

implies that Li is faithfully represented on F<. Thus

I Li I =  I Qi I = 2        for all i.

Now suppose Li C\ n,v,- Lj 9*1. Then we would have LT,vi P/ not

the identity on F,-. But j^i implies that Lj 2i(Py, N) is the identity

on Vi. Thus L/n njV, P/ =1 for all t. This implies that
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N' = LiXLlX ■ ■ ■ X L'pm

and thus | N'\ =2"™. Since | A'| f^l (mod p), N' cannot have a fixed-

point-free automorphism whose order is a power of p. This concludes

the proof of Theorem 2.

The proof of Theorem 1 now follows by induction on the order of

G. First suppose G has two distinct minimal <r-admissible normal sub-

groups Hi, H2. Then G is isomorphic to a subgroup of the direct

product of G/Hi and G/H2 and both G/Hi and G/H2 satisfy the

theorem. It then follows that G would satisfy the theorem.

Thus, for part (a) of the theorem, we may assume that the Fitting

group Fi(G) is a g-group for some prime q. Then 0qq>(G) satisfies the

conditions of Theorem 2. Therefore <jpn~ is the identity on

Oqq'(G)/Fi(G). By [4, Lemma 4], this implies that <tp"~ is the identity

on G/Fi(G). Then, by induction, we have

h(G) = 1 A- h(G/Fi(G)) g 1 + (w - 1) = n.

For part (b) of Theorem 1, we may assume that 0r>(G) = 1. Then

by one application of Theorem 2, a"n~ is the identity on 0*T> (G)/0*(G),

and by a second application, apU~ is the identity on Orx'x(G)/Ox*'(G).

Thus, again using [4, Lemma 4], apn~ is the identity on G/0T^(G).

Induction now implies that

k(G) = 1 + h(G/OrAG)) ^ 1 + [(» - l)/2] = [(n + l)/2].

All that remains now is to show that the inequalities in Theorem 1

are best-possible. For part (a), this follows from examples constructed

by Shult [5, Theorem 5]. For part (b), however, Shult's construction

has to be modified somewhat. Working by induction, Shult assumes

that Gk is a solvable group of Fitting height k which admits a fixed-

point-free automorphism of order ph. Then if qk is any prime such

that qk = l (mod p) and qk does not divide the order of G, Shult

proceeds to construct a new group Gk+i such that Fi(Gk+i) is a g-group,

Gk+i/Fi(Gk+i) is isomorphic to Gk, h(Gk+i)=kArl, and Gk+i admits a

fixed-point-free automorphism of order pk+1. A close look at Shult's

procedure reveals that it is only necessary that qk does not divide the

order of Fi(G). Thus if g, r are distinct primes such that q=r = l

(mod p), Shult's procedure can be used to construct groups Gk with

the following properties.

(1) Gk is a g, r-group.

(2) Fi(Gk) is either a q- or an r-group.

(3) Gk admits a fixed-point-free automorphism of order pk.

(4) h(Gk)=k.
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It now follows that lqiGk) and/or lriGk) is equal to [(& + l)/2]. Thus

the inequality in part (b) is best-possible.
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