SOLVABLE GROUPS ADMITTING A FIXED-POINT-FREE
AUTOMORPHISM OF PRIME POWER ORDER

FLETCHER GROSS
1. Introduction. The purpose of the paper is to prove the following:

THEOREM 1. Suppose G is a finite group which admits an automor-
phism o of order pm, where p is an odd prime, such that o fixes only the
identity element of G.

(a) If G is solvable, then h(G) =n.

(b) If G is w-solvable, then 1.(G) < [(n+1)/2].

Furthermore, both these inequalities are best-possible.

Here k(G), the Fitting height (also called the nilpotent length) of
G, is as defined in [7]. I.(G), the 7-length of G, is defined in an obvious
analogy to the definition of p-length in [2].

Higman [3] proved Theorem 1 in the case n=1 (subsequently,
without making any assumptions on the solvability of G, Thompson
[6] obtained the same result). Hoffman [4] and Shult [S] proved
Theorem 1 provided that either p is not a Fermat prime or a Sylow
2-group of G is abelian.

For p=2, Gorenstein and Herstein [1] obtained Theorem 1 if
n <2, and Hoffman and Shult both obtained Theorem 1 provided
that a Sylow g-group of G is abelian for all Mersenne primes ¢ which
divide the order of G. Shult, who considers a more general situation
of which Theorem 1 is a special case, recently extended his results to
include all primes, but his bound on %(G) is not best-possible in
the special case of Theorem 1. It also should be noted that Thompson
[7] obtained a bound for A(G) under a much more general hypothesis
than that considered in the other papers mentioned.

Theorem 1 is a consequence of

THEOREM 2. Let G be a finite group admitting a fixed-point-free
automorphism o of order p*, p an odd prime, and let H be a normal Hall
subgroup of G such that H contains its centralizer in G. Then the auto-
morphism of G/H induced by o~ is the identity automorphism.

Here again, the papers of Hoffman and Shult imply Theorem 2 if
either p is not a Fermat prime or a Sylow 2-group of G is abelian.
Thus what is new about the present paper is that no condition is im-
posed upon the Sylow 2-groups of G if p is a Fermat prime.
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The restriction to odd primes is essential since Theorem 2 is false
for p=2, n>2. To see this let g=2"—1 be some Mersenne prime and
let M be the nonabelian group of exponent ¢ and order ¢®. M admits
a fixed-point-free automorphism o of order 27+!. Let K be the semi-
direct product of M and the group generated by ¢2, and choose F to
be any finite field such that (1) the characteristic of F is not 2 or g,
and (2) F is a splitting field for K. There is a faithful irreducible
representation p of K over F such that p(¢?) has no nonzero fixed
vectors. Now for xE M, define p*(x) by p*(x) =p(x) ®p(x°). Then

choose p*(o) to be
(0 p(02)>
I 0

p*(o) is of order 2™t! and p*(0)~'p*(x)p*(c) =p*(x°). Thus p* is a
faithful representation of the semidirect product of M and {¢), the
group generated by ¢. If H is the space on which p*(M(s)) operates,
then p*(¢) induces a fixed-point-free automorphism of the semi-
direct product HM. This automorphism is of order 2™+! on both HM
and HM/H.

2. Proofs. First we need some elementary number theoretic re-
sults which we state without proof.

(2.1) LEMMA. Let p =241 be an odd Fermat prime. Then p* divides
(2"—1) if and only if 2s p*—! divides n.

(2.2) LEMMA. Suppose p=2°+1 is an odd Fermat prime and p*
=2%41 for some positive integers a, b. Then a=1, b=s unless p =3,
in which case a=2, b=3 is also possible.

We now proceed to prove Theorem 2 by induction on the order of
G. H is a characteristic subgroup of G so H certainly admits ¢. By
induction, if G is a proper subgroup of G such that G; admits ¢ and
Gi1= H, then ¢#" must be the identity on G/H. According to [2,
Theorem C], this implies that

(1) G/H is a g-group for some prime gq.

(2) Either ¢(G/H) =1 or (G/H)' =¢(G/H)=Z(G/H).

(3) (o) is faithfully and irreducibly represented by the automor-
phisms induced on (G/H)/¢#(G/H).

(Here ¢(G) and Z(G) denote the Frattini subgroup and center, re-
spectively, of G.) Now there must be a Sylow ¢g-group M of G such
that M admits o. Clearly G=HM and M=G/H. Thus we must show
that 67"~ fixes M elementwise. For convenience we set ?" ' =¢".
Now suppose x is an element of M not fixed by ¢'. Let y=(x, ¢)
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=x"1x""#1. Now since H contains its centralizer in G, it follows that
there is a Sylow r-group K of H such that M normalizes K, K admits
o, and (y, K)#1. Now let N be the centralizer of K in M, and con-
sider the group KM/N. This group satisfies the hypothesis of Theo-
rem 2, and so, if H> K, we must have ¢’ is the identity on M/N. But
N is a proper subgroup of M (since y&N) so that ¢’ must fix N
elementwise. Since p cannot divide the order of M, this would imply
that ¢’ is the identity on M.

Thus we assume that H is an r-group for some prime r. Now
G/¢(H) satisfies the hypothesis of the theorem, so by induction we
may assume that ¢(H)=1. From now on we consider H as a vector
space over a field F of characteristic » and we consider M(cs), the
semidirect product of M and (o), as a linear group operating on H.
Since ¢ is fixed-point-free on G, o, as a linear transformation, cannot
have 1 as an eigenvalue. Now extending the field F does not change
the structure of {(¢)M nor the eigenvalues of . Accordingly we con-
sider (¢)M as a linear group over a field F of characteristic 7, and we
assume that F is a splitting field for {(¢)M.

Now let V be an irreducible F—{oc)M submodule such that
(M, a" ") is not the identity on V. Next decompose V into the sum
V=V1®V:® - - - of minimal characteristic ¥— M submodules V.
Since V is irreducible, ¢ must permute the V; transitively. Let
r=¢7" be the first power of o which fixes all the V;, and number the
V:so that Vi = Vis1 (moapm. Next let N be the restriction of M to
V, K, the kernel of the representation of N afforded by the module
Vi, and Q;=N/K;. Since Z(Q,) is represented by a scalar matrix on
V., 7 must fix Z(Q:) elementwise. Now m =0 would imply that =g,
V="V, and K;=1. Since ¢ must induce a fixed-point-free automor-
phism of Z(N), this implies that m > 0.

Now the argument in [5, pp. 704-708] shows that 1 must be an
eigenvalue of o unless p"~™=¢?+1, Q; is of order ¢***!, and Q; is an
extra-special g-group. We now proceed to finish the proof of Theorem
2 by showing that under the conditions just stated, ¢ cannot be fixed-
point-free on N'.

First pr~m=¢%+1 implies that ¢=2 (since p is odd) and p is a
Fermat prime =2¢+1. Thus either d=s, n—m=1 or, if p=3, we
could have d=3, n—m=2. In any event d is the smallest positive
integer such that (22¢—1) is divisible by p~~™. Now ¢?""' is not the
identity on any V; since (M, o) is not the identity on V. For the
same reason N/N’ is a faithful GF(¢g) — (o) module and Q./Q/ is a
faithful GF(q)—{r) module. But since M/¢(M) is an irreducible
module for {(¢) and since Q.:/Q! is of order 224, it follows that N/N’
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and Q./Q/! are irreducible modules for (¢) and (), respectively. From
(2.1) it follows that the smallest integer k such that p» divides (2¢—1)
is k=2spm~1=2dp™ Thus N/N'is of order 22¢*", Now Q;= N/K, and
so Q.;/Q/ is operator isomorphic as a (r)-module to N/(K;N’).

(2.3) LemMA. (1) For all i, k such that 1 <1<p™, 1 Sk Zp™,
t+k—1
()
=i
is of order 224™—H),

(2) For all 2, k such that 1 Si<p™, 1 Sk <p™,

+k—1
( n KjN’) (KiwuN') = N.

j=t
Proor. Throughout, the indices j on the subgroups K; are to be
taken modulo p™. Now if k=1, then
| KN'/N'| = | N/N'| /| N/KN'| = 2260,

Now assume the first assertion of the lemma is true for a given
kE<pm. Now

H+k—1
( n KjN’) K.‘+kZ\T,/K.'+kN,
J=

is a (r)-submodule of N/K,; N'. Since N/K.N' is an irreducible
(r)-module, we conclude that either the second part of the lemma
holds or

t+k—1
N KiN' < KipV'.

=i
In the latter case we certainly have

t+k—1 +k t+k—1 4
N KN £ 0 KN =( n K;N') -

J=t J=i+1 =1

Since
+k—1
N>( n K,~N'>>N'
J=1

from (1), this implies that

tt+k—1
('w0)/ >
J=1
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is a nontrivial proper (g)-submodule of the irreducible (¢)-module
N/N'. This contradiction establishes the second part of the lemma for
the given value of k.

But then
i+k—1 +k
N/Ki+kN'§< n K:‘N'>/< n K:'N'>'
=i =i
But since

i+k—1
()

this implies that
ik
(5 5) o] - e
=i

Thus part (1) of the lemma is proved for k+1. Then, by induction,
the lemma is proved.

Now let L;=;x: K;N' for all 7, 1 £:<p™ From the lemma, L;K;
=L.'K.'N,=N for all 1. A]SO since Lg=L{+1 (mod p™), L1L2 AR Lp"’/N,
is a nontrivial {¢)-module. Thus I4L, - - - L,»=N. Our goal now is
to show that N’ is the direct product

L{X L{X - - X Lym.
To do this, we first need
(2.4) LEMMA. (L;, L) =1 if 15%k.

= 226"k and | N/K;uN'| = 2%,

Proor. Suppose (x, ¥)#=1 for xEL;, yE L. Choose ¢ such that
(%, ¥) is not the identity on V,. Now at least one of L; and Ly is con-
tained in K.N’. Without loss of generality assume that L;=K.N'.
Therefore x=gh where g€K, hEN'. Now N’ =Z(N). Therefore
(gh, y) = (g, y). But g is the identity on V. which implies that (g, y)
is also the identity on V.. This proves the lemma.

As an immediate consequence of the lemma we have N'=L{L;
- -+ Lim. Now as in the proof just given, L;< K N’ implies that (L,
N) is the identity on V.. Since N is faithfully represented on 1, this
implies that L/ is faithfully represented on V. Thus

|Li|=|0il=2 foralli

Now suppose L! M Il.; L} #1. Then we would have II;.; L not
the identity on V. But j>1 implies that L} (L, N) is the identity
on V. Thus L! N\ II;.; L} =1 for all <. This implies that



1966] SOLVABLE GROUPS ADMITTING AN AUTOMORPHISM 1445
N =L{XLiX -+ X Lym

and thus | N’| =2#™. Since | N’| #1 (mod p), N’ cannot have a fixed-
point-free automorphism whose order is a power of p. This concludes
the proof of Theorem 2.

The proof of Theorem 1 now follows by induction on the order of
G. First suppose G has two distinct minimal s-admissible normal sub-
groups H,, H,. Then G is isomorphic to a subgroup of the direct
product of G/H; and G/H, and both G/H; and G/H, satisfy the
theorem. It then follows that G would satisfy the theorem.

Thus, for part (a) of the theorem, we may assume that the Fitting
group Fi(G) is a g-group for some prime ¢g. Then O, (G) satisfies the
conditions of Theorem 2. Therefore ¢?"' is the identity on
0.0(G)/Fi(G). By [4, Lemma 4], this implies that ¢*" ™ is the identity
on G/ Fi(G). Then, by induction, we have

G =1+ h(G/Fi(G) =1+ (n—1) =n

For part (b) of Theorem 1, we may assume that 0,.(G) =1. Then
by one application of Theorem 2, ¢?" " is the identity on Oy (G) /0+(G),
and by a second application, 6?" " is the identity on Ors#(G) /O (G).
Thus, again using [4, Lemma 4], 0" is the identity on G/O(G).
Induction now implies that

L(G) =1+ 1L(G/0w(G) 1+ [(n—1)/2] = [(n + 1)/2].

All that remains now is to show that the inequalities in Theorem 1
are best-possible. For part (a), this follows from examples constructed
by Shult [5, Theorem 5]. For part (b), however, Shult’s construction
has to be modified somewhat. Working by induction, Shult assumes
that Gy is a solvable group of Fitting height k& which admits a fixed-
point-free automorphism of order p*. Then if ¢; is any prime such
that ¢x=1 (mod p) and ¢. does not divide the order of G, Shult
proceeds to construct a new group Gi41 such that Fi1(Gx4a1) is a g-group,
Giy1/ F1(Gr1) is isomorphic to Gi, B(Giry1) =k+1, and Gy admits a
fixed-point-free automorphism of order p*+'. A close look at Shult’s
procedure reveals that it is only necessary that ¢; does not divide the
order of Fi(G). Thus if ¢, r are distinct primes such that g=r=1
(mod p), Shult’s procedure can be used to construct groups G, with
the following properties.

(1) G is a q, r-group.

(2) Fi(Gy) is either a g- or an r-group.

(3) Gk admits a fixed-point-free automorphism of order p*.

(4) h(Gx) =E.
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It now follows that l,(G:) and/or I,(Gx) is equal to [(k+1)/2]. Thus
the inequality in part (b) is best-possible.
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