ARTINIAN AND NOETHERIAN HYPERCENTRAL GROUPS

HERMANN SIMON

1. Recently, Kemhadze [1] has proved that a finite group G is nilpotent if and only if each nonabelian subgroup S of G has a non-cyclic commutator factor group. In this note we will generalize Kemhadze's theorem in two ways: the first two theorems will be concerned with artinian groups which contain Kemhadze's theorem as a special case; our third theorem will characterize noetherian nilpotent groups in a similar way.

I want to take this opportunity to express my appreciation to Professor Reinhold Baer for his interest in the completion of this paper.

2. Notations.
 artinian = minimum condition for subgroups.
 noetherian = maximum condition for subgroups.
 factor of G = any epimorphic image of any subgroup of G.
 $Z(G)$ = center of G.
 $Z_0 = 1 \leq Z_1 = Z(G) \leq \cdots \leq Z_\alpha \leq \cdots$ are the terms of the upper central series of G (possibly continued transfinitely).
 hypercenter = last term of the upper central series.
 hypercentral i.e. G itself is a term of its upper central series.
 nilpotent i.e. $G = Z_n$, n a natural number.
 class of $G =$ smallest integer n (provided that it does exist) such that $G = Z_n$.
 $x \circ y = x^{-1}y^{-1}xy$.
 $A \circ B =$ subgroup of G generated by $a \circ b$ where $a \in A$ and $b \in B$.
 $^0G = G \geq ^1G = G \circ G \geq ^2G = G \circ ^1G \geq \cdots \geq ^nG \geq \cdots$ are the terms of the lower central series (possibly continued transfinitely).
 $p =$ natural prime number.

3. In the following lemma \mathcal{E} will be a group-theoretical property such that if A and B are two normal \mathcal{E}-subgroups of the group G then AB is also a (normal) \mathcal{E}-subgroup of G.

 Lemma. If M is a group which is not an \mathcal{E}-group but all whose proper normal subgroups are \mathcal{E}-groups, then M/M' is either a finite cyclic p-group or a Prüfer group of type p^∞.

 Proof. Since the product of any two proper normal subgroups of M is a subgroup of M.

Received by the editors January 21, 1966.

1407
M is a proper subgroup of M, the result follows by Newman-Wiegold [1, p. 244].

In Theorems 1 and 2 below we will apply this lemma in case G is hypercentral (according to P. Hall [1, Lemma 1, p. 334] “hypercentral” meets the requirement for G) and G is nilpotent.

Theorem 1. The following properties of the artinian group G are equivalent:

(I) G is hypercentral.

(II) If S is a nonabelian finitely generated subgroup of G and if S/S' is primary, then S/S' is noncyclic.

Proof. (I)⇒(II). According to Baer [3, Satz 4.1, p. 21] G is locally finite-nilpotent; hence (II) is a consequence of (I).

(II)⇒(I). Deny. Since G is artinian, there exists a subgroup M of G which is not hypercentral but whose proper subgroups are hypercentral; in particular M is not abelian. If M were not finitely generated, each finitely generated subgroup F of M would be hypercentral. Since G and a fortiori F are artinian, F would be finite and nilpotent, so that the artinian group M is locally finite-nilpotent and therefore by Baer [3, Satz 4.1, p. 21] M is hypercentral, a contradiction. Therefore M is finitely generated. According to the preceding lemma, M/M' is a cyclic p-group. Since M is not abelian, this is a contradiction. Q.E.D.

After deleting “finitely generated” from (II) in Theorem 1 one obtains

Theorem 2. The following properties of the artinian group G are equivalent:

(I) G is nilpotent

(II) If S is a nonabelian subgroup of G and if S/S' is primary, then S/S' is noncyclic.

Proof. (I)⇒(II). Clear.

(II)⇒(I). Deny. Since G is artinian, there exists a subgroup M of G which is not nilpotent, but whose proper subgroups are nilpotent. By (II) M/M' is not cyclic so that according to the preceding lemma M/M' is a Prüfer group of type p^∞. By Theorem 1 the artinian group M is hypercentral; by Baer [3, Satz 4.1, p. 21] there exists an abelian normal subgroup $A\triangleleft M$ with finite M/A. Since M/AM' is a finite factorgroup of the Prüfer group M/M', $M = AM'$. Since $M' < M$, M' is nilpotent and hence $AM' = M$ is nilpotent, a contradiction. Q.E.D.
Theorem 3. G is noetherian and nilpotent if and only if (a) G is finitely generated, (b) each nonabelian factor of G has a noncyclic commutator factorgroup and (c) there exists an integer $n \geq 0$ such that the class of a finite nilpotent factorgroup of G does not exceed n.

Proof. The necessity of (a), (b) and (c) is readily seen.

Now assume the validity of (a), (b) and (c) and deny that G is noetherian and nilpotent. Then by Baer [1, Lemma 4, p. 410] there exists an epimorphic image H of G which is not of finite class, but whose proper epimorphic images are of finite class.

(1) H does not contain abelian normal subgroups $\neq 1$.

Assume there exists an abelian normal subgroup $A \neq 1$ of H. Since H/A is finitely generated and nilpotent, by Baer [2, Satz 1, p. 310] H is nilpotent, a contradiction.

(2) $^{\ast}H = \bigcap_{i=0}^{\infty} iH = 1$.

Deny. Apply (b) to see that $(^{\ast}H)' \neq ^{\ast}H \neq 1$ and apply (1) to show $(^{\ast}H)' \neq 1$. Hence $H/(^{\ast}H)'$ is of finite class, proving the existence of a positive integer c with the property $^{\ast}H \leq ^{c}H \leq (^{\ast}H)' < ^{\ast}H$, the desired contradiction.

(3) Since $^{\ast}H = \bigcap_{i=0}^{\infty} iH = 1$, by Baer [2, p. 306] the intersection of all normal subgroups X of H with finite nilpotent factorgroup H/X is 1. By (c) $^{\ast}H \leq X$ for all these X; therefore $^{\ast}H = 1$, i.e. H is nilpotent. By (a) and Baer [2, Satz B, p. 299] H is noetherian, i.e. H is noetherian and nilpotent, a contradiction. Q.E.D.

Bibliography

Reinhold Baer

Philip Hall

S. S. Kemhadze

M. F. Newman and J. Wiegold

University of Miami