The center of a complete relatively complemented lattice is a complete sublattice
HTML articles powered by AMS MathViewer
- by M. F. Janowitz
- Proc. Amer. Math. Soc. 18 (1967), 189-190
- DOI: https://doi.org/10.1090/S0002-9939-1967-0200209-7
- PDF | Request permission
References
- Garrett Birkhoff, Lattice Theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR 0029876
- David J. Foulis, A note on orthomodular lattices, Portugal. Math. 21 (1962), 65–72. MR 148581
- G. Grätzer and E. T. Schmidt, Standard ideals in lattices, Acta Math. Acad. Sci. Hungar. 12 (1961), 17–86 (English, with Russian summary). MR 133265, DOI 10.1007/BF02066675
- Samuel S. Holland Jr., A Radon-Nikodym theorem in dimension lattices, Trans. Amer. Math. Soc. 108 (1963), 66–87. MR 151407, DOI 10.1090/S0002-9947-1963-0151407-3
- Irving Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. (2) 61 (1955), 524–541. MR 88476, DOI 10.2307/1969811
- Shûichirô Maeda, On relatively semi-orthocomplemented lattices, J. Sci. Hiroshima Univ. Ser. A 24 (1960), 155–161. MR 123494
- John von Neumann, Continuous geometry, Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960. Foreword by Israel Halperin. MR 0120174
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 189-190
- MSC: Primary 06.30
- DOI: https://doi.org/10.1090/S0002-9939-1967-0200209-7
- MathSciNet review: 0200209