
A GENERALIZATION OF WEDDERBURN'S THEOREM1

D. L. OUTCALT AND ADIL YAQUB

Wedderburn's Theorem, asserting that a finite division ring is

necessarily commutative, has been generalized in several directions

[2]. Our present object is to establish the following additional gen-

eralization.

Theorem 1. Suppose R is any associative ring with Jacobson radical

J such that R/J is a finite ring with exactly q elements. Suppose also

that (i) R/J is a division ring, (ii) J2 = (0), and (iii) the number of dis-

tinct qth powers of all elements of R is at most q. Then R is commutative.

Proof. For any x in R, let x — x + J. First, observe that xq

=yq (mod J) if and only if &9 = yq which, in turn, is equivalent .to

x = y, or x=y (mod J). Hence there are at least q distinct qth powers

of elements of P. Thus, by (iii), there are exactly q distinct qth

powers of elements of the ground ring R. It further follows that

(1) x = y(mod /) implies xq = yq.

For, otherwise, there would be more than q distinct 3th powers of

elements of P, since x^y (mod J) implies xq^yq (mod /).

Now, let aEJ and let bER. Then hq = b and hence bq — bEJ.
Therefore, by (ii), we have

(2) a(b" - b) = 0,    (bq - b)a = 0    (aEJ,b arbitrary).

Again, let aEJ. Since J2 = (0), by (ii), therefore

(3) (ab + b)q = ab" + babq~l + b2ab"~2 + • • • + bq~xab + b",

(4) (ba + b)q = bqa+ bab^1 + Pab^2 + • • • + bq~lab + bq.

We have thus shown that

(5) (ab + b)q — (ba + b)q = ab" - bqa        (aEJ,b arbitrary).

Moreover, aEJ implies ab+b = ba+b (mod J), and hence, by (1),

(6) (ab + b)q = (ba + b)q        (aEJ,b arbitrary).

Now, an easy combination of (2), (5), (6), shows that
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(7) a £ /   implies a is in the center of R.

To complete the proof of the theorem, let x, y££, and in view of

(7), we may (and shall) assume x££ y££ Now, by hypothesis, R/J

is a finite division ring and hence, by Wedderburn's Theorem, R/J

is a finite commutative field. Therefore, the multiplicative group of

nonzero elements of R/J is cyclic [l, p. 317]. Let | be a generator for

R/J. Then, for some integers i, j and some a, o'£/, we have

(8) x = ? + a,    y = % + a'        {a £ /, a' £ /).

Hence, by (7), (8), xy = yx, and the theorem is proved.

Note that the case /=(0) of Theorem 1 yields Wedderburn's

Theorem.

Next, we prove that, in the presence of (i) and (ii), condition (iii)

is indeed equivalent to commutativity.

Theorem 2. Suppose R, J, and R/J are as in Theorem 1, and sup-

pose that (i) and (ii) of Theorem 1 hold. Then R is commutative if and

only if (iii) of Theorem 1 holds.

Proof. Suppose £ is a commutative ring with Jacobson radical J

such that R/J has exactly q elements. Suppose also that (i) and (ii)

hold. In view of Theorem 1, we will be through if we can show that

(iii) holds. Now, it is well known that the number q of elements in the

finite field R/J satisfies: q = pk, p the characteristic of £/£, p prime.

Suppose x=y (mod J), and suppose for the moment x^O (mod J).

Then x = £i+a, y—^'+a', for some a, a' in /, and where £ is a gen-

erator for R/J. Hence, x« = (^+a)p*=|ip* and yq={^+a')p*=^I>*-

This follows since R is commutative, /2 = (0), and p££E.J (since

£>f = 0). We have thus shown that x=y^0 (mod J) implies x9 = y9.

As this holds trivially if x=y = 0 (mod J) (since J2 = {0)), we have

x=y (mod J) implies xq = yq, and thus (iii) is verified. This proves

the theorem.

We now show that Theorem 1 is not necessarily true if any one of

the hypotheses (i), (ii), or (iii) is deleted. To this end, consider the

following examples.

Example 1. Any complete matrix ring R over G¥{pk) satisfies (ii)

and (iii) but does not satisfy (i). Since £ is not commutative, the

hypothesis (i) in Theorem 1 cannot be deleted.

Example 2. The direct sum of GF(22) with the subring £ of 3X3

matrices consisting of the strictly upper triangular matrices with

entries in GF(2) satisfies (i) and (iii) but does not satisfy (ii). Since

£ is not commutative, the hypothesis (ii) in Theorem 1 cannot be

deleted.
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Example 3. The subring R of 2X2 matrices over GF(2) defined by

HCKKK!)}
satisfies (i) and (ii) but does not satisfy (iii). Since R is not commuta-

tive, the hypothesis (iii) in Theorem 1 cannot be deleted.

Moreover, we remark that the hypothesis "J2 = (0)" in Theorem 1

cannot in general be replaced by the weaker hypothesis "Jn = (0)

for some «>2". Indeed, observe that for the ring given in Example 2

above, we have J" = (0) for every w>2.

Finally, note that Theorems 1 and 2 apply to infinite rings and to

rings without identity. An example is furnished by taking the direct

sum of the ring of integers mod p2 (p prime) with an infinite number

of copies of Po, where P0 is any ring of characteristic p which, in

addition, is a zero ring. This ring, of course, is of characteristic p2

and has no identity.
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